nsga-ii-CDP代码
时间: 2025-01-09 14:09:46 浏览: 76
### NSGA-II与CDP代码实现
NSGA-II (Non-dominated Sorting Genetic Algorithm II) 是一种用于解决多目标优化问题的有效算法。而CDP (Constrained Dominance Principle) 则是在处理约束条件下的改进原则。
#### Python中的NSGA-II基础框架
下面是一个简化版的NSGA-II基本结构,适用于大多数情况:
```python
import random
from typing import List, Tuple
def nsga_ii(population_size: int, generations: int, crossover_rate: float, mutation_rate: float) -> None:
population = initialize_population(population_size)
for generation in range(generations):
offspring = []
while len(offspring) < population_size:
parent1, parent2 = select_parents(population)
if random.random() < crossover_rate:
child1, child2 = crossover(parent1, parent2)
offspring.extend([child1, child2])
else:
offspring.append(random.choice([parent1, parent2]))
mutated_offspring = [mutate(individual, mutation_rate) for individual in offspring]
combined_population = population + mutated_offspring
fronts = fast_non_dominated_sort(combined_population)
new_population = []
i = 0
while len(new_population) + len(fronts[i]) <= population_size:
new_population.extend(assign_crowding_distance(fronts[i]))
i += 1
remaining_individuals = assign_crowding_distance(fronts[i])
sorted_remaining = sort_by_crowding_distance(remaining_individuals)
new_population.extend(sorted_remaining[:population_size-len(new_population)])
population = new_population
best_solutions = get_best_solutions(population)
def initialize_population(size: int) -> list:
"""初始化种群"""
pass
def select_parents(population: List[List[float]]) -> Tuple[list, list]:
"""选择父代个体"""
pass
def crossover(parent1: list, parent2: list) -> Tuple[list, list]:
"""交叉操作"""
pass
def mutate(individual: list, rate: float) -> list:
"""变异操作"""
pass
def fast_non_dominated_sort(population: List[List[float]]) -> List[List[List[float]]]:
"""快速非支配排序"""
pass
def assign_crowding_distance(front: List[List[float]]) -> List[List[float]]:
"""分配拥挤距离"""
pass
def sort_by_crowding_distance(individuals: List[List[float]]) -> List[List[float]]:
"""按拥挤度降序排列"""
pass
def get_best_solutions(population: List[List[float]]) -> List[List[float]]:
"""获取最优解集"""
pass
```
此段代码展示了如何构建一个简单的NSGA-II框架[^1]。然而,在实际应用中还需要考虑具体的应用场景以及数据特性来调整参数设置和函数定义。
对于带有约束条件的情况,则可以引入CDP机制来进行适应性修改。当评估某个体时,如果违反了任何硬性约束,则该个体被认为劣于其他满足所有约束条件的竞争者;而在软性约束方面,则通过惩罚因子影响其适应度得分。
阅读全文
相关推荐

















