活动介绍

F:\anaconda\envs\pytorch\python.exe -X pycache_prefix=C:\Users\Administrator\AppData\Local\JetBrains\PyCharm2023.2\cpython-cache "E:/PyCharm 2023.2.5/plugins/python/helpers/pydev/pydevd.py" --multiprocess --qt-support=auto --client 127.0.0.1 --port 54466 --file F:\yolov5-master\yolov5-master\1.py 已连接到 pydev 调试器(内部版本号 232.10227.11)F:\yolov5-master\yolov5-master\1.py:5: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. ckpt1 = torch.load('runs/train/exp2/weights/best.pt') 进程已结束,退出代码为 0

时间: 2025-07-15 13:37:49 浏览: 9
<think>好的,我现在要解决用户的问题,他遇到了一个关于PyTorch加载模型时的警告,还有进程退出代码0的情况。首先,我需要仔细分析他提供的命令行输出和错误信息。 用户运行的命令是启动Python脚本并连接到PyCharm的调试器。脚本路径是F:\yolov5-master\yolov5-master\1.py。错误信息显示在第五行,使用torch.load时出现FutureWarning,提到weights_only参数默认为False,可能存在安全风险,并建议在未来的版本中改为True。退出代码0通常表示程序正常结束,但警告需要处理。 首先,我需要理解这个警告的含义。PyTorch在加载模型时,默认使用pickle模块,这可能执行恶意代码。为了安全,建议设置weights_only=True,但这可能会限制加载的对象类型。用户需要在不影响模型加载的情况下解决这个问题。 接下来,我应该检查用户代码中的torch.load调用。根据错误信息,用户加载的是best.pt文件,路径是'runs/train/exp2/weights/best.pt'。代码第5行是ckpt1 = torch.load(...)。当前参数没有指定weights_only,所以默认为False,触发警告。 解决方案是修改torch.load的参数,将weights_only设为True。但需要确认该模型是否仅包含张量数据,没有自定义对象。如果是YOLOv5官方训练的模型,通常可以安全使用weights_only=True。如果用户自己保存的模型可能包含其他对象,可能需要调整保存方式。 此外,用户需要将PyTorch版本升级到最新,以确保兼容性。因为未来版本会默认改为True,提前适应可以避免后续问题。 还要注意,退出代码0表示程序正常结束,但警告本身不会导致程序崩溃,只是提示潜在风险。用户可能希望消除警告,保持代码的整洁和未来兼容性。 可能的步骤是:修改torch.load行,添加weights_only=True,检查是否能正常加载模型。如果出现错误,可能需要重新保存模型,或者处理允许的类。同时建议用户升级PyTorch版本。 总结:用户需要调整代码以适应新的安全设置,确保模型加载安全,并保持环境更新。</think>这个输出信息是PyTorch在执行模型加载时触发的安全警告,结合调试器连接信息和进程退出代码,以下是分步解析: --- ### **一、命令行结构解析** ```bash F:\anaconda\envs\pytorch\python.exe -X pycache_prefix=... --file F:\yolov5-master\yolov5-master\1.py ``` - **作用**:通过PyCharm调试器启动Python脚本 - `-X pycache_prefix`:指定.pyc缓存目录 - `--multiprocess`:启用多进程调试 - `--client 127.0.0.1:54466`:连接到本地PyCharm调试服务端 --- ### **二、核心警告分析** ```python 1.py:5: FutureWarning: You are using `torch.load` with `weights_only=False` ``` - **触发位置**:脚本第5行 `ckpt1 = torch.load('best.pt')` - **警告原因**: - PyTorch默认使用`weights_only=False`加载模型(允许任意Python对象反序列化) - **安全风险**:恶意模型可能通过`pickle`模块执行任意代码 - **未来变更**:PyTorch将在未来版本默认改为`weights_only=True` --- ### **三、解决方案** #### 1. 修改模型加载方式(推荐) ```python # 原代码 ckpt1 = torch.load('runs/train/exp2/weights/best.pt') # 改为(显式设置安全模式) ckpt1 = torch.load('runs/train/exp2/weights/best.pt', weights_only=True) ``` - **验证兼容性**:若模型仅包含张量/基础类型数据可安全加载 - **若报错**:需重新保存模型(使用`torch.save`时避免存储自定义类) #### 2. 升级PyTorch版本 ```bash pip install torch --upgrade ``` - **新版本优化**:部分版本已支持更完善的`weights_only`模式 #### 3. 白名单机制(高级用法) ```python import torch.serialization torch.serialization.add_safe_globals([YourCustomClass]) ``` - **适用场景**:模型包含必要的自定义类时 --- ### **四、进程退出代码0解读** `进程已结束,退出代码为 0` 表示: - **脚本正常执行完成**:未发生崩溃或未捕获异常 - **警告不影响程序流程**:属于未来兼容性提示,非致命错误 --- ### **五、完整调试建议** 1. 检查`best.pt`来源 - 是否来自可信源(如官方YOLOv5预训练模型) - 若为自定义训练结果,建议重新导出: ```python torch.save(model.state_dict(), 'safe_model.pt') # 仅保存权重 ``` 2. 添加异常捕获 ```python try: ckpt1 = torch.load(..., weights_only=True) except Exception as e: print(f"加载失败: {str(e)}") ``` --- ### **附:安全模式工作原理** 当`weights_only=True`时: $$ \text{允许数据类型} = \begin{cases} \text{基础类型} & \text{int, float, str} \\ \text{容器类型} & \text{dict, list, tuple} \\ \text{张量} & \text{torch.Tensor} \\ \text{特定类} & \text{通过add_safe_globals注册} \end{cases} $$ 此模式通过限制反序列化类型,阻断潜在恶意代码执行路径。
阅读全文

相关推荐

(swin1) C:\Users\CD\apex>pip install -v --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . Using pip 24.2 from D:\Anaconda3\envs\swin1\lib\site-packages\pip (python 3.8) Processing c:\users\cd\apex Running command Preparing metadata (pyproject.toml) torch.__version__ = 1.5.0+cu92 running dist_info creating C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info writing C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\PKG-INFO writing dependency_links to C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\dependency_links.txt writing top-level names to C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\top_level.txt writing manifest file 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\SOURCES.txt' reading manifest file 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\SOURCES.txt' adding license file 'LICENSE' writing manifest file 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\SOURCES.txt' creating 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex-0.1.dist-info' <string>:67: UserWarning: Option --pyprof not specified. Not installing PyProf dependencies! Preparing metadata (pyproject.toml) ... done Building wheels for collected packages: apex Running command Building wheel for apex (pyproject.toml) <string>:67: UserWarning: Option --pyprof not specified. Not installing PyProf dependencies! torch.__version__ = 1.5.0+cu92 Compiling cuda extensions with nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0 from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8/bin Traceback (most recent call

Downloading https://pypi.tuna.tsinghua.edu.cn/packages/1d/c7/6e21ecece28e6d625f42e708c7523cd78ec82d1622f98562f82bf02748b7/mamba_ssm-2.2.4.tar.gz (91 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [23 lines of output] C:\Users\admin\AppData\Local\Temp\pip-build-env-0ie_wrtf\overlay\Lib\site-packages\torch\_subclasses\functional_tensor.py:275: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) <string>:118: UserWarning: mamba_ssm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc. torch.__version__ = 2.6.0+cpu Traceback (most recent call last): File "E:\anaconda\envs\mamba_env\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "E:\anaconda\envs\mamba_env\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "E:\anaconda\envs\mamba_env\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\admin\AppData\Local\Temp\pip-build-env-0ie_wrtf\overlay\Lib\site-packages\setuptools\build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) File "C:\Users\admin\AppData\Local\Temp\pip-build-env-0ie_wrtf\ov

copying mmcv\ops\csrc\pytorch\npu\nms_rotated_npu.cpp -> build\lib.win-amd64-3.8\mmcv\ops\csrc\pytorch\npu copying mmcv\ops\csrc\pytorch\npu\psa_mask_npu.cpp -> build\lib.win-amd64-3.8\mmcv\ops\csrc\pytorch\npu copying mmcv\ops\csrc\pytorch\npu\roi_align_npu.cpp -> build\lib.win-amd64-3.8\mmcv\ops\csrc\pytorch\npu copying mmcv\ops\csrc\pytorch\npu\roi_pool_npu.cpp -> build\lib.win-amd64-3.8\mmcv\ops\csrc\pytorch\npu copying mmcv\ops\csrc\pytorch\npu\voxelization_npu.cpp -> build\lib.win-amd64-3.8\mmcv\ops\csrc\pytorch\npu running build_ext D:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\utils\cpp_extension.py:380: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') creating build\temp.win-amd64-3.8 creating build\temp.win-amd64-3.8\Release creating build\temp.win-amd64-3.8\Release\mmcv creating build\temp.win-amd64-3.8\Release\mmcv\ops creating build\temp.win-amd64-3.8\Release\mmcv\ops\csrc creating build\temp.win-amd64-3.8\Release\mmcv\ops\csrc\pytorch creating build\temp.win-amd64-3.8\Release\mmcv\ops\csrc\pytorch\cpu "C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.43.34808\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -IC:\Users\Administrator\AppData\Local\Temp\pip-install-j2ekj2ve\mmcv_de97da00817c43e380453fa1489e5f62\mmcv\ops\csrc\common -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include\torch\csrc\api\include -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include\TH -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include\THC -ID:\Software\Anaconda3\envs\mmyolo\include -ID:\Software\Anaconda3\envs\mmyolo\Include "-IC:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.43.34808\include" "-IC:\Progr

libtorch报错terminate called after throwing an instance of 'std::runtime_error' what(): The following operation failed in the TorchScript interpreter. Traceback of TorchScript, serialized code (most recent call last): File "code/__torch__/ultralytics/nn/tasks.py", line 61, in forward model22 = self.model _0 = getattr(model22, "0") _24 = (_1).forward(act, (_0).forward(act, x, ), ) ~~~~~~~~~~~ <--- HERE _25 = (_3).forward(act, (_2).forward(act, _24, ), ) _26 = (_4).forward(act, _25, ) File "code/__torch__/ultralytics/nn/modules/conv.py", line 12, in forward x: Tensor) -> Tensor: conv = self.conv _0 = (argument_1).forward((conv).forward(x, ), ) ~~~~~~~~~~~~~ <--- HERE return _0 class Concat(Module): File "code/__torch__/torch/nn/modules/conv.py", line 12, in forward bias = self.bias weight = self.weight input = torch._convolution(x, weight, bias, [2, 2], [1, 1], [1, 1], False, [0, 0], 1, False, False, True, True) ~~~~~~~~~~~~~~~~~~ <--- HERE return input class ConvTranspose2d(Module): Traceback of TorchScript, original code (most recent call last): C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\conv.py(549): _conv_forward C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\conv.py(554): forward C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1729): _slow_forward C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1750): _call_impl C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1739): _wrapped_call_impl D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\nn\modules\conv.py(91): forward_fuse C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1729): _slow_forward C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1750): _call_impl C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1739): _wrapped_call_impl D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\nn\tasks.py(159): _predict_once D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\nn\tasks.py(138): predict D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\nn\tasks.py(120): forward C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1729): _slow_forward C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1750): _call_impl C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\nn\modules\module.py(1739): _wrapped_call_impl C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\jit\_trace.py(1276): trace_module C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\jit\_trace.py(696): _trace_impl C:\Users\atom\AppData\Roaming\Python\Python312\site-packages\torch\jit\_trace.py(1000): trace D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\engine\exporter.py(540): export_torchscript D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\engine\exporter.py(191): outer_func D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\engine\exporter.py(453): __call__ D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\engine\model.py(728): export D:\anaconda3\envs\YoLov8\Lib\site-packages\ultralytics\cfg\__init__.py(989): entrypoint D:\anaconda3\envs\YoLov8\Scripts\yolo.exe\__main__.py(7): <module> <frozen runpy>(88): _run_code <frozen runpy>(198): _run_module_as_main RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0! (when checking argument for argument weight in method wrapper_CUDA___slow_conv2d_forward)

C:\anaconda3\envs\landslide\python.exe D:/SUBOWEN/code/UNetFormer/GeoSeg/train_supervision.py -c D:/SUBOWEN/code/UNetFormer/GeoSeg/config/bijie/unetformer_ours.py sys.path: ['D:\\SUBOWEN\\code\\UNetFormer\\GeoSeg', 'D:\\SUBOWEN\\code\\UNetFormer', 'D:\\SUBOWEN\\code\\UNetFormer\\GeoSeg', 'G:\\PyCharm 2020.1\\plugins\\python\\helpers\\pycharm_display', 'C:\\anaconda3\\envs\\landslide\\python38.zip', 'C:\\anaconda3\\envs\\landslide\\DLLs', 'C:\\anaconda3\\envs\\landslide\\lib', 'C:\\anaconda3\\envs\\landslide', 'C:\\Users\\Administrator\\AppData\\Roaming\\Python\\Python38\\site-packages', 'C:\\anaconda3\\envs\\landslide\\lib\\site-packages', 'G:\\PyCharm 2020.1\\plugins\\python\\helpers\\pycharm_matplotlib_backend', 'D:\\SUBOWEN\\code\\UNetFormer\\GeoSeg\\geoseg'] Import successful C:\anaconda3\envs\landslide\lib\site-packages\scipy\__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.24.4 warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}" C:\anaconda3\envs\landslide\lib\site-packages\albumentations\__init__.py:13: UserWarning: A new version of Albumentations is available: 2.0.8 (you have 1.4.18). Upgrade using: pip install -U albumentations. To disable automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE to 1. check_for_updates() C:\anaconda3\envs\landslide\lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) C:\anaconda3\envs\landslide\lib\site-packages\timm\models\_factory.py:138: UserWarning: Mapping deprecated model name swsl_resnet18 to current resnet18.fb_swsl_ig1b_ft_in1k. model = create_fn( C:\anaconda3\envs\landslide\lib\site-packages\torch\functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3527.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Traceback (most recent call last): File "D:/SUBOWEN/code/UNetFormer/GeoSeg/train_supervision.py", line 246, in <module> main() File "D:/SUBOWEN/code/UNetFormer/GeoSeg/train_supervision.py", line 236, in main model = Supervision_Train.load_from_checkpoint(config.pretrained_ckpt_path, config=config) File "C:\anaconda3\envs\landslide\lib\site-packages\pytorch_lightning\utilities\model_helpers.py", line 125, in wrapper return self.method(cls, *args, **kwargs) File "C:\anaconda3\envs\landslide\lib\site-packages\pytorch_lightning\core\module.py", line 1582, in load_from_checkpoint loaded = _load_from_checkpoint( File "C:\anaconda3\envs\landslide\lib\site-packages\pytorch_lightning\core\saving.py", line 63, in _load_from_checkpoint checkpoint = pl_load(checkpoint_path, map_location=map_location) File "C:\anaconda3\envs\landslide\lib\site-packages\lightning_fabric\utilities\cloud_io.py", line 59, in _load with fs.open(path_or_url, "rb") as f: File "C:\anaconda3\envs\landslide\lib\site-packages\fsspec\spec.py", line 1310, in open f = self._open( File "C:\anaconda3\envs\landslide\lib\site-packages\fsspec\implementations\local.py", line 201, in _open return LocalFileOpener(path, mode, fs=self, **kwargs) File "C:\anaconda3\envs\landslide\lib\site-packages\fsspec\implementations\local.py", line 365, in __init__ self._open() File "C:\anaconda3\envs\landslide\lib\site-packages\fsspec\implementations\local.py", line 370, in _open self.f = open(self.path, mode=self.mode) PermissionError: [Errno 13] Permission denied: 'D:/SUBOWEN/code/UNetFormer/GeoSeg/huggingface_hub' Process finished with exit code 1

D:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\utils\cpp_extension.py:382: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') creating build\temp.win-amd64-3.9 creating build\temp.win-amd64-3.9\Release creating build\temp.win-amd64-3.9\Release\mmcv creating build\temp.win-amd64-3.9\Release\mmcv\ops creating build\temp.win-amd64-3.9\Release\mmcv\ops\csrc creating build\temp.win-amd64-3.9\Release\mmcv\ops\csrc\pytorch creating build\temp.win-amd64-3.9\Release\mmcv\ops\csrc\pytorch\cpu creating build\temp.win-amd64-3.9\Release\mmcv\ops\csrc\pytorch\cuda "C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.43.34808\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -DMMCV_WITH_CUDA -IC:\Users\Administrator\AppData\Local\Temp\pip-install-ueffqyg_\mmcv_a4ff4abc13194113ad9fe6c40a1210f2\mmcv\ops\csrc\pytorch -IC:\Users\Administrator\AppData\Local\Temp\pip-install-ueffqyg_\mmcv_a4ff4abc13194113ad9fe6c40a1210f2\mmcv\ops\csrc\common -IC:\Users\Administrator\AppData\Local\Temp\pip-install-ueffqyg_\mmcv_a4ff4abc13194113ad9fe6c40a1210f2\mmcv\ops\csrc\common\cuda -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include\torch\csrc\api\include -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include\TH -ID:\Software\Anaconda3\envs\mmyolo\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\include" -ID:\Software\Anaconda3\envs\mmyolo\include -ID:\Software\Anaconda3\envs\mmyolo\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.43.34808\include" "-IC:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\VS\include" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt

pip uninstall grpcio tensorboard WARNING: Skipping grpcio as it is not installed. WARNING: Skipping tensorboard as it is not installed. (crack_detect) PS C:\Users\vivian> (crack_detect) PS C:\Users\vivian> # 2. 安装特定版本依赖 (crack_detect) PS C:\Users\vivian> pip install grpcio==1.24.3 tensorboard==2.9.1 WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='pypi.org', port=443): Read timed out. (read timeout=15)")': /simple/grpcio/ ERROR: Could not find a version that satisfies the requirement grpcio==1.24.3 (from versions: none) ERROR: No matching distribution found for grpcio==1.24.3 (crack_detect) PS C:\Users\vivian> (crack_detect) PS C:\Users\vivian> # 3. 安装PyTorch (crack_detect) PS C:\Users\vivian> pip install torch==1.13.1 torchvision==0.14.1 Collecting torch==1.13.1 Using cached torch-1.13.1-cp38-cp38-win_amd64.whl.metadata (23 kB) Collecting torchvision==0.14.1 Using cached torchvision-0.14.1-cp38-cp38-win_amd64.whl.metadata (11 kB) Collecting typing-extensions (from torch==1.13.1) Using cached typing_extensions-4.13.2-py3-none-any.whl.metadata (3.0 kB) Requirement already satisfied: numpy in e:\anaconda\envs\crack_detect\lib\site-packages (from torchvision==0.14.1) (1.24.4) Collecting requests (from torchvision==0.14.1) Using cached requests-2.32.4-py3-none-any.whl.metadata (4.9 kB) Collecting pillow!=8.3.*,>=5.3.0 (from torchvision==0.14.1) Using cached pillow-10.4.0-cp38-cp38-win_amd64.whl.metadata (9.3 kB) Collecting charset_normalizer<4,>=2 (from requests->torchvision==0.14.1) Downloading charset_normalizer-3.4.2-cp38-cp38-win_amd64.whl.metadata (36 kB) Collecting idna<4,>=2.5 (from requests->torchvision==0.14.1) Using cached idna-3.10-py3-none-any.whl.metadata (10 kB) Collecting urllib3<3,>=1.21.1 (from requests->torchvision==0.14.1) Downloading urllib3-2.2.3-py3-none-any.whl.metadata (6.5 kB) Collecting certifi>=2017.4.17 (from requests->torchvision==0.14.1) Downloading certifi-2025.7.14-py3-none-any.whl.metadata (2.4 kB) Downloading torch-1.13.1-cp38-cp38-win_amd64.whl (162.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/162.6 MB ? eta -:--:-- ERROR: Exception: Traceback (most recent call last): File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 98, in read data: bytes = self.__fp.read(amt) File "E:\anaconda\envs\crack_detect\lib\http\client.py", line 459, in read n = self.readinto(b) File "E:\anaconda\envs\crack_detect\lib\http\client.py", line 503, in readinto n = self.fp.readinto(b) File "E:\anaconda\envs\crack_detect\lib\socket.py", line 681, in readinto return self._sock.recv_into(b) File "E:\anaconda\envs\crack_detect\lib\ssl.py", line 1274, in recv_into return self.read(nbytes, buffer) File "E:\anaconda\envs\crack_detect\lib\ssl.py", line 1132, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\cli\base_command.py", line 105, in _run_wrapper status = _inner_run() File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\cli\base_command.py", line 96, in _inner_run return self.run(options, args) File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\cli\req_command.py", line 67, in wrapper return func(self, options, args) File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\commands\install.py", line 379, in run requirement_set = resolver.resolve( File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 179, in resolve self.factory.preparer.prepare_linked_requirements_more(reqs) File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\operations\prepare.py", line 554, in prepare_linked_requirements_more self._complete_partial_requirements( File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\operations\prepare.py", line 469, in _complete_partial_requirements for link, (filepath, _) in batch_download: File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\network\download.py", line 184, in __call__ for chunk in chunks: File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\cli\progress_bars.py", line 55, in _rich_progress_bar for chunk in iterable: File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_internal\network\utils.py", line 65, in response_chunks for chunk in response.raw.stream( File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\urllib3\response.py", line 622, in stream data = self.read(amt=amt, decode_content=decode_content) File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\urllib3\response.py", line 587, in read raise IncompleteRead(self._fp_bytes_read, self.length_remaining) File "E:\anaconda\envs\crack_detect\lib\contextlib.py", line 131, in __exit__ self.gen.throw(type, value, traceback) File "E:\anaconda\envs\crack_detect\lib\site-packages\pip\_vendor\urllib3\response.py", line 443, in _error_catcher raise ReadTimeoutError(self._pool, None, "Read timed out.") pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.

FAILED [100%] examples\RTDETR-ONNXRuntime-Python\main.py:15 ([doctest] main.RTDETR) 037 Methods: 038 draw_detections: Draw bounding boxes and labels on the input image. 039 preprocess: Preprocess the input image for model inference. 040 bbox_cxcywh_to_xyxy: Convert bounding boxes from center format to corner format. 041 postprocess: Postprocess model output to extract and visualize detections. 042 main: Execute the complete object detection pipeline. 043 044 Examples: 045 Initialize RT-DETR detector and run inference 046 >>> detector = RTDETR("./rtdetr-l.onnx", "image.jpg", conf_thres=0.5) UNEXPECTED EXCEPTION: NoSuchFile("[ONNXRuntimeError] : 3 : NO_SUCHFILE : Load model from ./rtdetr-l.onnx failed:Load model ./rtdetr-l.onnx failed. File doesn't exist") Traceback (most recent call last): File "F:\softWare\Anaconda\envs\pytorch_env\Lib\doctest.py", line 1368, in __run exec(compile(example.source, filename, "single", File "<doctest main.RTDETR[0]>", line 1, in <module> File "F:\yolov11\ultralytics-v8.3.147\examples\RTDETR-ONNXRuntime-Python\main.py", line 67, in __init__ self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\86159\AppData\Roaming\Python\Python312\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py", line 472, in __init__ self._create_inference_session(providers, provider_options, disabled_optimizers) File "C:\Users\86159\AppData\Roaming\Python\Python312\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py", line 550, in _create_inference_session sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ onnxruntime.capi.onnxruntime_pybind11_state.NoSuchFile: [ONNXRuntimeError] : 3 : NO_SUCHFILE : Load model from ./rtdetr-l.onnx failed:Load model ./rtdetr-l.onnx failed. File doesn't exist F:\yolov11\ultralytics-v8.3.147\examples\RTDETR-ONNXRuntime-Python\main.py:46: UnexpectedException这个报错怎么解决

(jchao) C:\Users\10618>pip install --no-cache-dir mamba-ssm Looking in indexes: http://mirrors.aliyun.com/pypi/simple/ Collecting mamba-ssm Downloading http://mirrors.aliyun.com/pypi/packages/1d/c7/6e21ecece28e6d625f42e708c7523cd78ec82d1622f98562f82bf02748b7/mamba_ssm-2.2.4.tar.gz (91 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [23 lines of output] C:\Users\10618\AppData\Local\Temp\pip-build-env-k7vs6md2\overlay\Lib\site-packages\torch\_subclasses\functional_tensor.py:275: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) <string>:118: UserWarning: mamba_ssm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc. torch.__version__ = 2.6.0+cpu Traceback (most recent call last): File "d:\py\Anaconda3\envs\jchao\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "d:\py\Anaconda3\envs\jchao\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "d:\py\Anaconda3\envs\jchao\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\10618\AppData\Local\Temp\pip-build-env-k7vs6md2\overlay\Lib\site-packages\setuptools\build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) File "C:\Users\10618\AppData\Local\Temp\pip-build-env-k7vs6md2\overlay\Lib\site-packages\setuptools\build_meta.py", line 304, in _get_build_requires self.run_setup() File "C:\Users\10618\AppData\Local\Temp\pip-build-env-k7vs6md2\overlay\Lib\site-packages\setuptools\build_meta.py", line 320, in run_setup exec(code, locals()) File "<string>", line 188, in <module> NameError: name 'bare_metal_version' is not defined [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip.

D:\All-App\Anaconda3\envs\UBGOLD\python.exe D:\All-App\Edge-Downloads\UB-GOLD-main\UB-GOLD-main\1.py 正在加载ENZYMES数据集... 加载ENZYMES数据集时出错: tuple index out of range 成功加载 0 个酶结构 正在加载PROTEINS数据集... 加载PROTEINS数据集时出错: tuple index out of range 成功加载 0 个蛋白质结构 错误: 无法继续计算,因为一个或两个数据集为空 D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch_geometric\data\dataset.py:213: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. if osp.exists(f) and torch.load(f) != _repr(self.pre_transform): D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch_geometric\data\dataset.py:221: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. if osp.exists(f) and torch.load(f) != _repr(self.pre_filter): D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch_geometric\datasets\tu_dataset.py:132: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. out = torch.load(self.processed_paths[0]) 进程已结束,退出代码为 0

Collecting mmcv Downloading mmcv-2.2.0.tar.gz (479 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [16 lines of output] C:\Users\Administrator\AppData\Local\Temp\pip-install-ij7e6ncg\mmcv_3007a099656a49368da648b377e4cbfa\setup.py:5: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html from pkg_resources import DistributionNotFound, get_distribution, parse_version Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 34, in <module> File "C:\Users\Administrator\AppData\Local\Temp\pip-install-ij7e6ncg\mmcv_3007a099656a49368da648b377e4cbfa\setup.py", line 489, in <module> ext_modules=get_extensions(), File "C:\Users\Administrator\AppData\Local\Temp\pip-install-ij7e6ncg\mmcv_3007a099656a49368da648b377e4cbfa\setup.py", line 446, in get_extensions ext_ops = extension( File "C:\Anaconda\envs\yolo_v10\lib\site-packages\torch\utils\cpp_extension.py", line 1048, in CUDAExtension library_dirs += library_paths(cuda=True) File "C:\Anaconda\envs\yolo_v10\lib\site-packages\torch\utils\cpp_extension.py", line 1186, in library_paths paths.append(_join_cuda_home(lib_dir)) File "C:\Anaconda\envs\yolo_v10\lib\site-packages\torch\utils\cpp_extension.py", line 2223, in _join_cuda_home raise EnvironmentError('CUDA_HOME environment variable is not set. ' OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details.

下面是出现的报错× Building wheel for SharedArray (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [9 lines of output] running bdist_wheel running build running build_ext building 'SharedArray' extension creating build\temp.win-amd64-cpython-38\Release\src "D:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.43.34808\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -IC:\Users\LinRongqing\AppData\Local\Temp\pip-build-env-6gok3aov\overlay\Lib\site-packages\numpy\core\include -ID:\anaconda3\envs\ pytorch\include -ID:\anaconda3\envs\pytorch\Include "-ID:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.43.34808 \include" "-ID:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\VS\include" "-IC:\Program Files (x86)\Windows Kits\10\ include\10.0.26100.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\\include\10.0.26100.0\\um" "-IC:\Program Files (x86)\Windows Kits\10\\incl ude\10.0.26100.0\\shared" "-IC:\Program Files (x86)\Windows Kits\10\\include\10.0.26100.0\\winrt" "-IC:\Program Files (x86)\Windows Kits\10\\include\10.0.26100.0\\cppwinrt" /Tc.\src\map_owner.c /Fobuild\temp.win-amd64-cpython-38\Release\.\src\map_owner.obj map_owner.c .\src\map_owner.c(19): fatal error C1083: 无法打开包括文件: “sys/mman.h”: No such file or directory error: command 'D:\\Program Files (x86)\\Microsoft Visual Studio\\2022\\BuildTools\\VC\\Tools\\MSVC\\14.43.34808\\bin\\HostX86\\x64\\cl.exe' failed with exit code 2 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for SharedArray Failed to build SharedArray ERROR: Could not build wheels for SharedArray, which is required to install pyproject.toml-based projects

最新推荐

recommend-type

freude弗莱德FP-12A电脑DSP调音软件下载

freude弗莱德FP-12A电脑DSP调音软件下载
recommend-type

VC图像编程全面资料及程序汇总

【标题】:"精通VC图像编程资料全览" 【知识点】: VC即Visual C++,是微软公司推出的一个集成开发环境(IDE),专门用于C++语言的开发。VC图像编程涉及到如何在VC++开发环境中处理和操作图像。在VC图像编程中,开发者通常会使用到Windows API中的GDI(图形设备接口)或GDI+来进行图形绘制,以及DirectX中的Direct2D或DirectDraw进行更高级的图形处理。 1. GDI(图形设备接口): - GDI是Windows操作系统提供的一套应用程序接口,它允许应用程序通过设备无关的方式绘制图形。 - 在VC图像编程中,主要使用CDC类(设备上下文类)来调用GDI函数进行绘制,比如绘制线条、填充颜色、显示文本等。 - CDC类提供了很多函数,比如`MoveTo`、`LineTo`、`Rectangle`、`Ellipse`、`Polygon`等,用于绘制基本的图形。 - 对于图像处理,可以使用`StretchBlt`、`BitBlt`、`TransparentBlt`等函数进行图像的位块传输。 2. GDI+: - GDI+是GDI的后继技术,提供了更丰富的图形处理功能。 - GDI+通过使用`Graphics`类来提供图像的绘制、文本的渲染、图像的处理和颜色管理等功能。 - GDI+引入了对矢量图形、渐变色、复杂的文本格式和坐标空间等更高级的图形处理功能。 - `Image`类是GDI+中用于图像操作的基础类,通过它可以进行图像的加载、保存、旋转、缩放等操作。 3. DirectX: - DirectX是微软推出的一系列API集合,用于在Windows平台上进行高性能多媒体编程。 - DirectX中的Direct2D是用于硬件加速的二维图形API,专门用于UI元素和简单的图形渲染。 - DirectDraw主要用于硬件加速的位图操作,比如全屏游戏开发中的画面渲染。 4. 位图操作: - 在VC图像编程中,位图操作是一个重要的部分。需要了解如何加载、保存和处理位图(BMP)文件。 - 可以使用位图文件格式的解析,来访问位图的像素数据,进行像素级别的图像处理和修改。 5. 高级图像处理技术: - 包括图像滤镜、图像转换、图像压缩和解压缩技术。 - 需要掌握一些图像处理算法,比如卷积、FFT(快速傅里叶变换)、DCT(离散余弦变换)等。 - 了解图像的色彩空间转换,比如RGB到YUV的转换,这在视频处理中非常重要。 6. 图像库的使用: - 除了直接使用API进行图像处理之外,还可以使用开源的图像处理库,如OpenCV。 - OpenCV是一个跨平台的计算机视觉和机器学习软件库,它提供了很多高级的图像处理功能。 【压缩包子文件的文件名称列表】: VC++ 文件名称列表显示为"VC++",这表明文件包中可能包含了Visual C++的项目、源代码文件、动态链接库(DLLs)、编译器设置、链接器设置等。如果要使用这些文件进行VC图像编程,需要确保Visual C++开发环境已经安装并且配置好,同时需要安装好所有依赖的库和工具。 要开始VC图像编程,开发者需要具备C++编程基础,熟悉Windows编程概念,并且对图形学有一定的了解。掌握VC图像编程技巧,对于进行桌面应用程序开发、图像处理软件开发以及游戏开发等都是至关重要的。
recommend-type

Pokemmo响应速度翻倍:多线程处理的高级技巧

# 摘要 多线程处理是提高软件并发性能和响应速度的关键技术,本文从基础概念与优势出发,深入探讨了多线程的实现机制,包括线程模型、调度算法、编程关键技术、线程安全性最佳实践、死锁预防与处理等方面。通
recommend-type

人名列表滚动抽奖

<think>嗯,用户想实现一个滚动抽奖功能,需要前端动画效果和随机选择逻辑。首先,我得考虑前端怎么实现滚动效果。可能用CSS动画或者JavaScript的requestAnimationFrame?比如,使用CSS的@keyframes来控制位移,或者用JS动态更新样式。然后,随机选择算法,可能需要确保公平性,比如用Fisher-Yates洗牌算法,或者用Math.random()来生成随机索引。然后,用户可能需要平滑的滚动动画,比如先快速滚动,然后逐渐减速,最后停在选中的人名上。这可能需要设置定时器,逐步改变位置,或者使用CSS过渡效果。另外,还要考虑性能,避免页面卡顿,可能需要使用硬件加
recommend-type

一站式JSF开发环境:即解压即用JAR包

标题:“jsf开发完整JAR包”所指的知识点: 1. JSF全称JavaServer Faces,是Java EE(现EE4J)规范之一,用于简化Java Web应用中基于组件的用户界面构建。JSF提供了一种模型-视图-控制器(MVC)架构的实现,使得开发者可以将业务逻辑与页面表示分离。 2. “开发完整包”意味着这个JAR包包含了JSF开发所需的所有类库和资源文件。通常来说,一个完整的JSF包会包含核心的JSF库,以及一些可选的扩展库,例如PrimeFaces、RichFaces等,这些扩展库提供了额外的用户界面组件。 3. 在一个项目中使用JSF,开发者无需单独添加每个必要的JAR文件到项目的构建路径中。因为打包成一个完整的JAR包后,所有这些依赖都被整合在一起,极大地方便了开发者的部署工作。 4. “解压之后就可以直接导入工程中使用”表明这个JAR包是一个可执行的归档文件,可能是一个EAR包或者一个可直接部署的Java应用包。解压后,开发者只需将其内容导入到他们的IDE(如Eclipse或IntelliJ IDEA)中,或者将其放置在Web应用服务器的正确目录下,就可以立即进行开发。 描述中所指的知识点: 1. “解压之后就可以直接导入工程中使用”说明这个JAR包是预先配置好的,它可能包含了所有必要的配置文件,例如web.xml、faces-config.xml等,这些文件是JSF项目运行所必需的。 2. 直接使用意味着减少了开发者配置环境和处理依赖的时间,有助于提高开发效率。 标签“jsf jar包”所指的知识点: 1. 标签指明了JAR包的内容是专门针对JSF框架的。因此,这个JAR包包含了JSF规范所定义的API以及可能包含的具体实现,比如Mojarra或MyFaces。 2. “jar包”是一种Java平台的归档文件格式,用于聚合多个文件到一个文件中。在JSF开发中,JAR文件经常被用来打包和分发库或应用程序。 文件名称列表“jsf”所指的知识点: 1. “jsf”文件名可能意味着这是JSF开发的核心库,它应该包含了所有核心的JavaServer Faces类文件以及资源文件。 2. 如果是使用特定版本的JSF,例如“jsf-2.2.jar”,则表明文件内包含了对应版本的JSF实现。这种情况下,开发者必须确认他们所使用的Web服务器或应用程序服务器支持该版本的JSF。 3. 文件名称也可能是“jsf-components.jar”、“jsf-impl.jar”等,表明这个JAR包是JSF的一个子模块或特定功能组件。例如,“jsf-components.jar”可能包含了一系列用于在JSF应用中使用的自定义组件。 4. 对于开发者而言,了解文件名称中所蕴含的信息非常重要,因为这将决定他们需要下载哪些JAR包来满足特定项目的需求。 综合以上信息,开发者在使用JSF进行Java Web应用开发时,会通过一个预先配置好的JAR包来快速地搭建和启动项目。这样做不仅简化了项目初始化的过程,也使得开发者能够更加聚焦于业务逻辑的实现和界面设计,而不必深究底层框架配置的细节。
recommend-type

Pokemmo内存优化揭秘:专家教你如何降低50%资源消耗

# 摘要 本文综述了Pokemmo游戏的内存优化方法,从内存管理基础出发,探讨内存使用效率的影响因素,并介绍了性能监控与分析工具。在内存优化实践技巧章节中,详细讨论了代码层面的优化、数据结构和算法选择对内存效率的影响,并通过案例分析展示了实际的优化过程。针对Pokemmo游戏特点,分析了内存消耗特性并提出了特定优化技术。最后,本文展望了未来内存管理技术的发展方向,以及游戏开发中面临的新挑战,为Pokemmo及类似游戏提供了优化建议。 # 关键字 内存优化;内存管理;性能监控;数据结构;算法效率;游戏开发 参考资源链接:[Pokemmo必备资源包:四种ROM与汉化补丁](https://we
recommend-type

直接访问子路由是吧

<think>我们正在使用Vue2,因此需要参考VueRouterv3的文档(因为Vue2对应VueRouterv3,Vue3对应VueRouterv4)。用户的问题是:如何配置路由以支持直接访问子路由?即,在Vue2中,我们希望直接通过URL访问嵌套的子路由(例如:/parent/child),而不仅仅是先访问父路由再导航到子路由。根据之前的回答和引用,我们已经知道:1.在父路由的配置中,使用`children`数组来定义子路由。2.子路由的`path`不能以斜杠开头(例如:'child'而不是'/child'),这样它就会基于父路由的路径进行拼接。3.在父组件的模板中放置`<router-
recommend-type

C++函数库查询辞典使用指南与功能介绍

标题中提到的“C++函数库查询辞典”指的是一个参考工具书或者是一个软件应用,专门用来查询C++编程语言中提供的标准库中的函数。C++是一种静态类型、编译式、通用编程语言,它支持多种编程范式,包括过程化、面向对象和泛型编程。C++标准库是一组包含函数、类、迭代器和模板的库,它为C++程序员提供标准算法和数据结构。 描述中提供的内容并没有给出实际的知识点,只是重复了标题的内容,并且有一串无关的字符“sdfsdfsdffffffffffffffffff”,因此这部分内容无法提供有价值的信息。 标签“C++ 函数库 查询辞典”强调了该工具的用途,即帮助开发者查询C++的标准库函数。它可能包含每个函数的详细说明、语法、使用方法、参数说明以及示例代码等,是学习和开发过程中不可或缺的参考资源。 文件名称“c++函数库查询辞典.exe”表明这是一个可执行程序。在Windows操作系统中,以“.exe”结尾的文件通常是可执行程序。这意味着用户可以通过双击或者命令行工具来运行这个程序,进而使用其中的查询功能查找C++标准库中各类函数的详细信息。 详细知识点如下: 1. C++标准库的组成: C++标准库由多个组件构成,包括输入输出流(iostream)、算法(algorithm)、容器(container)、迭代器(iterator)、字符串处理(string)、数值计算(numeric)、本地化(locale)等。 2. 输入输出流(iostream)库: 提供输入输出操作的基本功能。使用诸如iostream、fstream、sstream等头文件中的类和对象(如cin, cout, cerr等)来实现基本的输入输出操作。 3. 算法(algorithm)库: 包含对容器进行操作的大量模板函数,如排序(sort)、查找(find)、拷贝(copy)等。 4. 容器(container)库: 提供各种数据结构,如向量(vector)、列表(list)、队列(queue)、映射(map)等。 5. 迭代器(iterator): 迭代器提供了一种方法来访问容器中的元素,同时隐藏了容器的内部结构。 6. 字符串处理(string)库: C++标准库中的字符串类提供了丰富的功能用于处理字符串。 7. 数值计算(numeric)库: 提供数值计算所需的函数和类,比如对复数的支持和数值算法。 8. 本地化(locale)库: 提供本地化相关的功能,比如日期、时间的格式化显示以及字符的本地化比较。 9. 错误处理和异常: C++通过throw、try、catch关键字和标准异常类提供了一套异常处理机制。 10. 智能指针: C++11及其后续版本提供了智能指针(如unique_ptr、shared_ptr、weak_ptr)来自动管理动态分配的内存。 11. lambda表达式: 在C++11中引入,允许临时创建匿名函数对象。 12. C++11新特性: 包括范围for循环、移动语义、类内初始化器、auto类型推导等。 使用C++函数库查询辞典的用户可能需要对C++的基础知识有一定的掌握,例如变量、数据类型、控制结构、函数以及面向对象的概念等。了解C++标准库的结构和内容能够帮助程序员有效地利用库函数进行软件开发,提高编程效率并减少重复造轮子的工作。 总结来说,一个C++函数库查询辞典工具对于C++程序员来说是一个非常有用的资源,它能够提供快速查找标准库函数的能力,帮助程序员更高效地解决问题和进行学习。同时,随着C++标准的不断更新,例如C++11、C++14、C++17和C++20,函数库查询辞典也会不断地更新以包含新的特性,这对于紧跟技术发展的开发者来说尤为重要。
recommend-type

【bat脚本安全最佳实践】:保护你的系统与脚本安全的黄金法则

# 摘要 本文旨在全面阐述BAT脚本的基础知识、安全编写原则、审查与优化方法以及在企业环境中的安全应用。通过深入分析脚本安全基础、常见安全陷阱及脚本的权限管理,文章提出了安全编写的具体实践和预防措施。本文详细介绍了脚本安全审查流程、代码优化、错误处理和安全更新维护策略。在企业应用方面,探讨了企业安全政策制定、脚本审计和版本控制以及外部威胁的防范措施。通过案例分析,总结了脚本
recommend-type

IIC抽电

<think>首先,用户的问题是:“请问IIC电路供电问题”。这看起来是关于IIC(Inter-IntegratedCircuit)总线的电源供应问题。IIC是一种串行通信总线,常用于微控制器和外设之间的通信。从系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识。-回答结构清晰,帮助用户逐步解决问题。参考提供的引用:-引用[1]提到IIC总线注意事项,包括热插拔问题和电源干扰。-引用[2]是关于IIC原理的代码片段。-引用[3]讨论实时时钟RTC,提到PCF85063A