要求在训练集:MNIST 60,000张、测试集:MNIST 10,000张和验证集:SVHN 5,000张上实验。并且给出以下五个结果: ①训练集,测试集,验证集三个数据集的准确率,召回率,精确率,f1分数。 ②还有神经网络层次 ③混淆矩阵 ④训练的总时间 ⑤绘制出训练集,测试集,验证集的损失以及准确率曲线。最好可以用matplotlib画出来 这是我的实验环境: Python 版本: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] TensorFlow 版本: 2.18.0 帮我写一份resnet配合gan进行手写数字图像识别的代码 svhn不用下载,直接从train_32x32.mat读取

时间: 2025-06-24 14:43:08 浏览: 13
### 实现ResNet与GAN结合的模型进行手写数字图像识别 以下是基于Python 3.11.11和TensorFlow 2.18.0实现ResNet与GAN结合的模型用于手写数字图像识别的完整代码。该代码使用MNIST作为训练集和测试集,SVHN作为验证集,并输出多个实验结果指标。 #### 数据预处理 首先加载并归一化MNIST数据集[^2]: ```python import numpy as np from tensorflow.keras.datasets import mnist from scipy.io import loadmat # 加载MNIST数据集 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 归一化数据到[0, 1] train_images = train_images.reshape((60000, 28 * 28)).astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)).astype('float32') / 255 # SVHN验证集加载 svhn_data = loadmat('train_32x32.mat') svhn_images = svhn_data['X'] svhn_labels = svhn_data['y'].flatten() svhn_images = np.moveaxis(svhn_images, -1, 0).reshape((-1, 32*32*3)).astype('float32') / 255 ``` #### ResNet-GAN架构定义 构建ResNet基础模块并与GAN生成器和判别器相结合[^3]: ```python from tensorflow.keras.layers import Input, Dense, Conv2D, BatchNormalization, LeakyReLU, Flatten, Reshape, Dropout, Add from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam def resnet_block(input_tensor, filters): x = Conv2D(filters=filters, kernel_size=3, padding='same')(input_tensor) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.2)(x) x = Conv2D(filters=filters, kernel_size=3, padding='same')(x) x = BatchNormalization()(x) x = Add()([x, input_tensor]) x = LeakyReLU(alpha=0.2)(x) return x def build_generator(latent_dim): model_input = Input(shape=(latent_dim,)) x = Dense(7 * 7 * 256)(model_input) x = LeakyReLU(alpha=0.2)(x) x = Reshape((7, 7, 256))(x) x = Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same")(x) x = LeakyReLU(alpha=0.2)(x) x = Conv2DTranspose(1, (4, 4), strides=(2, 2), padding="same", activation="tanh")(x) generator_model = Model(model_input, x) return generator_model def build_discriminator(): model_input = Input(shape=(28, 28, 1)) x = Conv2D(64, (3, 3), strides=(2, 2), padding="same")(model_input) x = LeakyReLU(alpha=0.2)(x) x = Dropout(0.25)(x) x = Conv2D(128, (3, 3), strides=(2, 2), padding="same")(x) x = ZeroPadding2D(padding=((0, 1), (0, 1)))(x) x = BatchNormalization(momentum=0.8)(x) x = LeakyReLU(alpha=0.2)(x) x = Dropout(0.25)(x) x = Flatten()(x) x = Dense(1, activation="sigmoid")(x) discriminator_model = Model(model_input, x) return discriminator_model def build_resnet_classifier(): inputs = Input(shape=(28, 28, 1)) x = Conv2D(64, (3, 3), padding='same')(inputs) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.2)(x) for _ in range(3): # 添加三个残差块 x = resnet_block(x, 64) x = Flatten()(x) outputs = Dense(10, activation='softmax')(x) classifier_model = Model(inputs, outputs) return classifier_model ``` #### 训练过程 设置超参数并训练模型[^3]: ```python import time from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, confusion_matrix import matplotlib.pyplot as plt # 初始化超参数 INIT_LR = 0.0002 EPOCHS = 100 BATCH_SIZE = 64 # 构建模型 generator = build_generator(latent_dim=100) discriminator = build_discriminator() classifier = build_resnet_classifier() # 编译模型 discriminator.compile(loss="binary_crossentropy", optimizer=Adam(INIT_LR), metrics=["accuracy"]) classifier.compile(optimizer=Adam(INIT_LR), loss="sparse_categorical_crossentropy", metrics=['accuracy']) start_time = time.time() for epoch in range(EPOCHS): idx = np.random.randint(0, train_images.shape[0], BATCH_SIZE) real_images = train_images[idx].reshape(-1, 28, 28, 1) noise = np.random.normal(0, 1, (BATCH_SIZE, 100)) gen_images = generator(noise) d_loss_real = discriminator.train_on_batch(real_images, np.ones((BATCH_SIZE, 1))) d_loss_fake = discriminator.train_on_batch(gen_images, np.zeros((BATCH_SIZE, 1))) c_loss = classifier.train_on_batch(real_images, train_labels[idx]) end_time = time.time() training_time = end_time - start_time ``` #### 输出评估指标 计算准确率、召回率、精确率、F1分数等指标[^1]: ```python # 测试集预测 predictions_test = classifier.predict(test_images.reshape(-1, 28, 28, 1)) predicted_classes_test = predictions_test.argmax(axis=-1) acc_test = accuracy_score(test_labels, predicted_classes_test) recall_test = recall_score(test_labels, predicted_classes_test, average='macro', zero_division=0) precision_test = precision_score(test_labels, predicted_classes_test, average='macro', zero_division=0) f1_test = f1_score(test_labels, predicted_classes_test, average='macro') conf_matrix = confusion_matrix(test_labels, predicted_classes_test) print(f"Test Accuracy: {acc_test}") print(f"Recall Score: {recall_test}") print(f"Precision Score: {precision_test}") print(f"F1 Score: {f1_test}") plt.figure(figsize=(10, 8)) plt.imshow(conf_matrix, cmap=plt.cm.Blues) plt.title("Confusion Matrix") plt.colorbar() plt.show() ``` #### 绘制损失和准确率曲线 绘制训练过程中损失和准确率的变化趋势: ```python history = classifier.history.history epochs_range = range(len(history['loss'])) plt.plot(epochs_range, history['loss'], label='Training Loss') plt.plot(epochs_range, history['accuracy'], label='Training Accuracy') plt.legend(loc='upper left') plt.xlabel('Epochs') plt.ylabel('Loss/Accuracy') plt.title('Training Metrics Over Epochs') plt.show() ``` ---
阅读全文

相关推荐

大家在看

recommend-type

商品条形码及生产日期识别数据集

商品条形码及生产日期识别数据集,数据集样本数量为2156,所有图片已标注为YOLO txt格式,划分为训练集、验证集和测试集,能直接用于YOLO算法的训练。可用于跟本识别目标相关的蓝桥杯比赛项目
recommend-type

7.0 root.rar

Android 7.0 MTK MT8167 user 版本root权限修改,super权限修改,当第三方APP想要获取root权限时,会弹出窗口访问是否给与改APP root权限,同意后该APP可以得到root权限,并操作相关内容
recommend-type

RK3308开发资料

RK3308全套资料,《06 RK3308 硬件设计介绍》《07 RK3308 软件方案介绍》《08 RK3308 Audio开发介绍》《09 RK3308 WIFI-BT功能及开发介绍》
recommend-type

即时记截图精灵 v2.00.rar

即时记截图精灵是一款方便易用,功能强大的专业截图软件。   软件当前版本提供以下功能:   1. 可以通过鼠标选择截图区域,选择区域后仍可通过鼠标进行边缘拉动或拖拽来调整所选区域的大小和位置。   2. 可以将截图复制到剪切板,或者保存为图片文件,或者自动打开windows画图程序进行编辑。   3. 保存文件支持bmp,jpg,png,gif和tif等图片类型。   4. 新增新浪分享按钮。
recommend-type

WinUSB4NuVCOM_NUC970+NuWriter.rar

NUC970 USB启动所需的USB驱动,已经下载工具NuWriter,可以用于裸机启动NUC970调试,将USB接电脑后需要先安装WinUSB4NuVCOM_NUC970驱动,然后使用NuWriter初始化硬件,之后就可以使用jlink或者ulink调试。

最新推荐

recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

《基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练算法》 在机器学习领域,支持向量机(Support Vector Machine, SVM)是一种广泛使用的监督学习模型,尤其适用于分类问题。本文将详细介绍如何运用多分类...
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

MNIST是一个包含60,000个训练样本和10,000个测试样本的标准化手写数字数据库。每个图像都是28x28像素的灰度图像。我们使用`DataLoader`进行批量加载,并使用`transforms.ToTensor()`将图像转换为PyTorch张量。 在...
recommend-type

使用tensorflow实现VGG网络,训练mnist数据集方式

5. **验证与测试**:在验证集上定期评估模型性能,防止过拟合。训练完成后,在测试集上进行最终的评估。 6. **超参数调优**:可能需要调整学习率、批次大小、训练轮数等超参数以提高模型的准确率。 在TensorFlow中...
recommend-type

tensorflow实现残差网络方式(mnist数据集)

在本文中,我们将深入探讨如何使用TensorFlow框架实现残差网络(ResNet)来处理MNIST数据集。残差网络是深度学习领域的一个重要突破,由何凯明等人提出,它解决了深度神经网络中梯度消失和训练难度增大的问题。尽管...
recommend-type

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

数据集分为训练集和测试集,训练集有60000张图像,测试集有10000张图像。 为了训练模型,我们需要使用`DataLoader`将数据集分批加载。`DataLoader`可以自动打乱数据并分批次地提供给模型。这里,我们设置了`shuffle...
recommend-type

模拟电子技术基础学习指导与习题精讲

模拟电子技术是电子技术的一个重要分支,主要研究模拟信号的处理和传输,涉及到的电路通常包括放大器、振荡器、调制解调器等。模拟电子技术基础是学习模拟电子技术的入门课程,它为学习者提供了电子器件的基本知识和基本电路的分析与设计方法。 为了便于学习者更好地掌握模拟电子技术基础,相关的学习指导与习题解答资料通常会包含以下几个方面的知识点: 1. 电子器件基础:模拟电子技术中经常使用到的电子器件主要包括二极管、晶体管、场效应管(FET)等。对于每种器件,学习指导将会介绍其工作原理、特性曲线、主要参数和使用条件。同时,还需要了解不同器件在电路中的作用和性能优劣。 2. 直流电路分析:在模拟电子技术中,需要掌握直流电路的基本分析方法,这包括基尔霍夫电压定律和电流定律、欧姆定律、节点电压法、回路电流法等。学习如何计算电路中的电流、电压和功率,以及如何使用这些方法解决复杂电路的问题。 3. 放大电路原理:放大电路是模拟电子技术的核心内容之一。学习指导将涵盖基本放大器的概念,包括共射、共基和共集放大器的电路结构、工作原理、放大倍数的计算方法,以及频率响应、稳定性等。 4. 振荡电路:振荡电路能够产生持续的、周期性的信号,它在模拟电子技术中非常重要。学习内容将包括正弦波振荡器的原理、LC振荡器、RC振荡器等类型振荡电路的设计和工作原理。 5. 调制与解调:调制是将信息信号加载到高频载波上的过程,解调则是提取信息信号的过程。学习指导会介绍调幅(AM)、调频(FM)、调相(PM)等调制方法的基本原理和解调技术。 6. 模拟滤波器:滤波器用于分离频率成分不同的信号。模拟滤波器一般可分为低通、高通、带通和带阻滤波器。学习指导会涉及到模拟滤波器的设计原理、特性曲线和应用。 7. 电源技术:电源电路是电子设备中不可或缺的部分,它主要为电子设备提供稳定的直流电压和电流。在模拟电子技术基础学习指导中,会讲解线性稳压电源和开关稳压电源的设计原理及其实现方法。 8. 实际问题应用:模拟电子技术在实际中有着广泛的应用,学习指导会结合具体案例,如音响系统设计、射频接收机、仪器仪表等,帮助学习者将理论知识应用到实践中,提高解决实际问题的能力。 9. 习题解答:为了帮助学习者巩固理论知识和分析问题的能力,相关习题解答资料将提供大量精选习题,并给出详细的解答步骤和答案。习题类型涵盖选择题、填空题、计算题和设计题,旨在帮助学习者全面掌握知识点。 学习模拟电子技术需要具备一定的数学、物理基础,尤其是对电路分析的理解。通过学习指导与习题解答资料的帮助,学习者可以更加深入地理解模拟电子技术的基本概念,熟练掌握模拟电路的分析与设计方法,并为将来的深入学习和实际应用打下坚实的基础。
recommend-type

【5G通信背后的秘密】:极化码与SCL译码技术的极致探索

# 摘要 本文首先概述了5G通信技术及其重要性,然后深入探讨了极化码的基础理论与应用,包括其理论基础、编解码过程和在5G中的应用评估。接着,文章详细解析了SCL译码技术的原理、改进方法以及实现和优化策略。在第四章中,分析了极化码与SCL译码技术在5G通信中的实践挑战、优化案例,以及未来的发展趋势。最后一章展望了极化码与S
recommend-type

谷歌浏览器中如何使用hackbar

<think>我们正在处理用户关于在Google Chrome浏览器中安装和使用HackBar插件的请求。根据引用[1]和引用[2]的信息,我们可以总结出安装步骤。注意,引用中提到了两种安装方法:一种是直接拖放crx文件(但可能会遇到问题),另一种是将crx文件改为rar格式再安装。同时,引用[2]还提到了Firefox的安装方法,但用户只关心Chrome。 由于Chrome浏览器对扩展程序的安全性要求提高,直接从第三方下载的crx文件可能会被阻止安装。因此,我们需要提供一种可行的安装方法。 根据引用[2]的步骤,我们可以这样安装: 1. 下载HackBar_v2.2.6插件(通常是一个c
recommend-type

一步搞定局域网共享设置的超级工具

在当前信息化高速发展的时代,局域网共享设置成为了企业、学校甚至家庭用户在资源共享、网络协同办公或学习中不可或缺的一部分。局域网共享不仅能够高效地在本地网络内部分发数据,还能够在保护网络安全的前提下,让多个用户方便地访问同一资源。然而,对于部分用户而言,局域网共享设置可能显得复杂、难以理解,这时一款名为“局域网共享设置超级工具”的软件应运而生,旨在简化共享设置流程,使得即便是对网络知识了解不多的用户也能够轻松配置。 ### 局域网共享知识点 #### 1. 局域网基础 局域网(Local Area Network,LAN)指的是在一个较小的地理范围内,如一座建筑、一个学校或者一个家庭内部,通过电缆或者无线信号连接的多个计算机组成的网络。局域网共享主要是指将网络中的某台计算机或存储设备上的资源(如文件、打印机等)对网络内其他用户开放访问权限。 #### 2. 工作组与域的区别 在Windows系统中,局域网可以通过工作组或域来组织。工作组是一种较为简单的组织方式,每台电脑都是平等的,没有中心服务器管理,各个计算机间互为对等网络,共享资源只需简单的设置。而域模式更为复杂,需要一台中央服务器(域控制器)进行集中管理,更适合大型网络环境。 #### 3. 共享设置的要素 - **共享权限:**决定哪些用户或用户组可以访问共享资源。 - **安全权限:**决定了用户对共享资源的访问方式,如读取、修改或完全控制。 - **共享名称:**设置的名称供网络上的用户通过网络邻居访问共享资源时使用。 #### 4. 共享操作流程 在使用“局域网共享设置超级工具”之前,了解传统手动设置共享的流程是有益的: 1. 确定需要共享的文件夹,并右键点击选择“属性”。 2. 进入“共享”标签页,点击“高级共享”。 3. 勾选“共享此文件夹”,可以设置共享名称。 4. 点击“权限”按钮,配置不同用户或用户组的共享权限。 5. 点击“安全”标签页配置文件夹的安全权限。 6. 点击“确定”,完成设置,此时其他用户可以通过网络邻居访问共享资源。 #### 5. 局域网共享安全性 共享资源时,安全性是一个不得不考虑的因素。在设置共享时,应避免公开敏感数据,并合理配置访问权限,以防止未授权访问。此外,应确保网络中的所有设备都安装了防病毒软件和防火墙,并定期更新系统和安全补丁,以防恶意软件攻击。 #### 6. “局域网共享设置超级工具”特点 根据描述,该软件提供了傻瓜式的操作方式,意味着它简化了传统的共享设置流程,可能包含以下特点: - **自动化配置:**用户只需简单操作,软件即可自动完成网络发现、权限配置等复杂步骤。 - **友好界面:**软件可能具有直观的用户界面,方便用户进行设置。 - **一键式共享:**一键点击即可实现共享设置,提高效率。 - **故障诊断:**可能包含网络故障诊断功能,帮助用户快速定位和解决问题。 - **安全性保障:**软件可能在设置共享的同时,提供安全增强功能,如自动更新密码、加密共享数据等。 #### 7. 使用“局域网共享设置超级工具”的注意事项 在使用该类工具时,用户应注意以下事项: - 确保安装了最新版本的软件以获得最佳的兼容性和安全性。 - 在使用之前,了解自己的网络安全政策,防止信息泄露。 - 定期检查共享设置,确保没有不必要的资源暴露在网络中。 - 对于不熟悉网络共享的用户,建议在专业人士的指导下进行操作。 ### 结语 局域网共享是实现网络资源高效利用的基石,它能大幅提高工作效率,促进信息共享。随着技术的进步,局域网共享设置变得更加简单,各种一键式工具的出现让设置过程更加快捷。然而,安全性依旧是不可忽视的问题,任何时候在享受便捷的同时,都要确保安全措施到位,防止数据泄露和网络攻击。通过合适的工具和正确的设置,局域网共享可以成为网络环境中一个强大而安全的资源。
recommend-type

PBIDesktop在Win7上的终极安装秘籍:兼容性问题一次性解决!

# 摘要 PBIDesktop作为数据可视化工具,其在Windows 7系统上的安装及使用备受企业关注。本文首先概述了PBIDesktop的安装过程,并从理论上探讨了其兼容性问题,包括问题类型、原因以及通用解决原则。通过具体