活动介绍

这个程序报错 tangent = bezier_curve_derivative(points, t) TypeError: 'numpy.ndarray' object is not callable

时间: 2024-04-16 10:24:55 浏览: 187
抱歉,我之前的回答有误。出现错误的原因是 `bezier_curve_derivative` 被误用成一个函数,而它是一个numpy数组。我将修正代码如下: ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation def bezier_curve(points, t): n = len(points) - 1 result = np.zeros_like(points[0]) for i in range(n + 1): result += binomial_coefficient(n, i) * ((1 - t) ** (n - i)) * (t ** i) * points[i] return result def binomial_coefficient(n, k): return np.math.factorial(n) / (np.math.factorial(k) * np.math.factorial(n - k)) def update(frame): t = frame / frames tangent = bezier_curve_derivative[frame] angle = np.arctan2(tangent[1], tangent[0]) car.set_transform(plt.transforms.Affine2D().rotate(angle).translated(positions[frame][0], positions[frame][1])) return car, # 贝塞尔曲线控制点 points = np.array([[0, 0], [1, 1], [2, -1], [3, 0]]) # 计算贝塞尔曲线上的点 frames = 100 positions = [bezier_curve(points, t) for t in np.linspace(0, 1, frames)] # 计算贝塞尔曲线切线方向 bezier_curve_derivative = np.gradient(positions, axis=0) # 创建画布和轴 fig, ax = plt.subplots() ax.set_xlim(-2, 4) ax.set_ylim(-2, 2) # 创建小车 car = plt.Rectangle((0, 0), 0.2, 0.1, fc='blue') ax.add_patch(car) # 动画更新函数 animation = FuncAnimation(fig, update, frames=frames, interval=50, blit=True) plt.show() ``` 在修正后的代码中,我将 `bezier_curve_derivative` 改为了一个numpy数组,以便在 `update` 函数中使用正确的切线值。 希望这次能够解决问题。如果还有其他问题,请随时提问。
阅读全文

相关推荐

这是我object.py的内容# coding=utf-8 from .collision import * from .graphics import load_texture from .utils import get_file_path class WorldObj: def __init__(self, obj, domain_rand, safety_radius_mult): """ Initializes the object and its properties """ # XXX this is relied on by things but it is not always set # (Static analysis complains) self.visible = True # same self.color = (0, 0, 0) # maybe have an abstract method is_visible, get_color() self.process_obj_dict(obj, safety_radius_mult) self.domain_rand = domain_rand self.angle = self.y_rot * (math.pi / 180) self.generate_geometry() def generate_geometry(self): # Find corners and normal vectors assoc w. object self.obj_corners = generate_corners(self.pos, self.min_coords, self.max_coords, self.angle, self.scale) self.obj_norm = generate_norm(self.obj_corners) def process_obj_dict(self, obj, safety_radius_mult): self.kind = obj['kind'] self.mesh = obj['mesh'] self.pos = obj['pos'] self.scale = obj['scale'] self.y_rot = obj['y_rot'] self.optional = obj['optional'] self.min_coords = obj['mesh'].min_coords self.max_coords = obj['mesh'].max_coords self.static = obj['static'] self.safety_radius = safety_radius_mult *\ calculate_safety_radius(self.mesh, self.scale) def render(self, draw_bbox): """ Renders the object to screen """ if not self.visible: return from pyglet import gl # Draw the bounding box if draw_bbox: gl.glColor3f(1, 0, 0) gl.glBegin(gl.GL_LINE_LOOP) gl.glVertex3f(self.obj_corners.T[0, 0], 0.01, self.obj_corners.T[1, 0]) gl.glVertex3f(self.obj_corners.T[0, 1], 0.01, self.obj_corners.T[1, 1]) gl.glVertex3f(self.obj_corners.T[0, 2], 0.01, self.obj_corners.T[1, 2]) gl.glVertex3f(self.obj_corners.T[0, 3], 0.01, self.obj_corners.T[1, 3]) gl.glEnd() gl.glPushMatrix() gl.glTranslatef(*self.pos) gl.glScalef(self.scale, self.scale, self.scale) gl.glRotatef(self.y_rot, 0, 1, 0) gl.glColor3f(*self.color) self.mesh.render() gl.glPopMatrix() # Below are the functions that need to # be reimplemented for any dynamic object def check_collision(self, agent_corners, agent_norm): """ See if the agent collided with this object For static, return false (static collisions checked w numpy in a batch operation) """ if not self.static: raise NotImplementedError return False def proximity(self, agent_pos, agent_safety_rad): """ See if the agent is too close to this object For static, return 0 (static safedriving checked w numpy in a batch operation) """ if not self.static: raise NotImplementedError return 0.0 def step(self, delta_time): """ Use a motion model to move the object in the world """ if not self.static: raise NotImplementedError class DuckiebotObj(WorldObj): def __init__(self, obj, domain_rand, safety_radius_mult, wheel_dist, robot_width, robot_length, gain=2.0, trim=0.0, radius=0.0318, k=27.0, limit=1.0): WorldObj.__init__(self, obj, domain_rand, safety_radius_mult) if self.domain_rand: self.follow_dist = np.random.uniform(0.3, 0.4) self.velocity = np.random.uniform(0.05, 0.15) else: self.follow_dist = 0.3 self.velocity = 0.1 self.max_iterations = 1000 # TODO: Make these DR as well self.gain = gain self.trim = trim self.radius = radius self.k = k self.limit = limit self.wheel_dist = wheel_dist self.robot_width = robot_width self.robot_length = robot_length # FIXME: this does not follow the same signature as WorldOb def step(self, delta_time, closest_curve_point, objects): """ Take a step, implemented as a PID controller """ # Find the curve point closest to the agent, and the tangent at that point closest_point, closest_tangent = closest_curve_point(self.pos, self.angle) iterations = 0 lookup_distance = self.follow_dist curve_point = None while iterations < self.max_iterations: # Project a point ahead along the curve tangent, # then find the closest point to to that follow_point = closest_point + closest_tangent * lookup_distance curve_point, _ = closest_curve_point(follow_point, self.angle) # If we have a valid point on the curve, stop if curve_point is not None: break iterations += 1 lookup_distance *= 0.5 # Compute a normalized vector to the curve point point_vec = curve_point - self.pos point_vec /= np.linalg.norm(point_vec) dot = np.dot(self.get_right_vec(self.angle), point_vec) steering = self.gain * -dot self._update_pos([self.velocity, steering], delta_time) def get_dir_vec(self, angle): x = math.cos(angle) z = -math.sin(angle) return np.array([x, 0, z]) def get_right_vec(self, angle): x = math.sin(angle) z = math.cos(angle) return np.array([x, 0, z]) def check_collision(self, agent_corners, agent_norm): """ See if the agent collided with this object """ return intersects_single_obj( agent_corners, self.obj_corners.T, agent_norm, self.obj_norm ) def proximity(self, agent_pos, agent_safety_rad): """ See if the agent is too close to this object based on a heuristic for the "overlap" between their safety circles """ d = np.linalg.norm(agent_pos - self.pos) score = d - agent_safety_rad - self.safety_radius return min(0, score) def _update_pos(self, action, deltaTime): vel, angle = action # assuming same motor constants k for both motors k_r = self.k k_l = self.k # adjusting k by gain and trim k_r_inv = (self.gain + self.trim) / k_r k_l_inv = (self.gain - self.trim) / k_l omega_r = (vel + 0.5 * angle * self.wheel_dist) / self.radius omega_l = (vel - 0.5 * angle * self.wheel_dist) / self.radius # conversion from motor rotation rate to duty cycle u_r = omega_r * k_r_inv u_l = omega_l * k_l_inv # limiting output to limit, which is 1.0 for the duckiebot u_r_limited = max(min(u_r, self.limit), -self.limit) u_l_limited = max(min(u_l, self.limit), -self.limit) # If the wheel velocities are the same, then there is no rotation if u_l_limited == u_r_limited: self.pos = self.pos + deltaTime * u_l_limited * self.get_dir_vec(self.angle) return # Compute the angular rotation velocity about the ICC (center of curvature) w = (u_r_limited - u_l_limited) / self.wheel_dist # Compute the distance to the center of curvature r = (self.wheel_dist * (u_l_limited + u_r_limited)) / (2 * (u_l_limited - u_r_limited)) # Compute the rotation angle for this time step rotAngle = w * deltaTime # Rotate the robot's position around the center of rotation r_vec = self.get_right_vec(self.angle) px, py, pz = self.pos cx = px + r * r_vec[0] cz = pz + r * r_vec[2] npx, npz = rotate_point(px, pz, cx, cz, rotAngle) # Update position self.pos = np.array([npx, py, npz]) # Update the robot's direction angle self.angle += rotAngle self.y_rot += rotAngle * 180 / np.pi # Recompute the bounding boxes (BB) for the duckiebot self.obj_corners = agent_boundbox( self.pos, self.robot_width, self.robot_length, self.get_dir_vec(self.angle), self.get_right_vec(self.angle) ) class DuckieObj(WorldObj): def __init__(self, obj, domain_rand, safety_radius_mult, walk_distance): WorldObj.__init__(self, obj, domain_rand, safety_radius_mult) self.walk_distance = walk_distance + 0.25 # Dynamic duckie stuff # Randomize velocity and wait time if self.domain_rand: self.pedestrian_wait_time = np.random.randint(3, 20) self.vel = np.abs(np.random.normal(0.02, 0.005)) else: self.pedestrian_wait_time = 8 self.vel = 0.02 # Movement parameters self.heading = heading_vec(self.angle) self.start = np.copy(self.pos) self.center = self.pos self.pedestrian_active = False # Walk wiggle parameter self.wiggle = np.random.choice([14, 15, 16], 1) self.wiggle = np.pi / self.wiggle self.time = 0 def check_collision(self, agent_corners, agent_norm): """ See if the agent collided with this object """ return intersects_single_obj( agent_corners, self.obj_corners.T, agent_norm, self.obj_norm ) def proximity(self, agent_pos, agent_safety_rad): """ See if the agent is too close to this object based on a heuristic for the "overlap" between their safety circles """ d = np.linalg.norm(agent_pos - self.center) score = d - agent_safety_rad - self.safety_radius return min(0, score) def step(self, delta_time): """ Use a motion model to move the object in the world """ self.time += delta_time # If not walking, no need to do anything if not self.pedestrian_active: self.pedestrian_wait_time -= delta_time if self.pedestrian_wait_time <= 0: self.pedestrian_active = True return # Update centers and bounding box vel_adjust = self.heading * self.vel self.center += vel_adjust self.obj_corners += vel_adjust[[0, -1]] distance = np.linalg.norm(self.center - self.start) if distance > self.walk_distance: self.finish_walk() self.pos = self.center angle_delta = self.wiggle * math.sin(48 * self.time) self.y_rot = (self.angle + angle_delta) * (180 / np.pi) self.obj_norm = generate_norm(self.obj_corners) def finish_walk(self): """ After duckie crosses, update relevant attributes (vel, rot, wait time until next walk) """ self.start = np.copy(self.center) self.angle += np.pi self.pedestrian_active = False if self.domain_rand: # Assign a random velocity (in opp. direction) and a wait time # TODO: Fix this: This will go to 0 over time self.vel = -1 * np.sign(self.vel) * np.abs(np.random.normal(0.02, 0.005)) self.pedestrian_wait_time = np.random.randint(3, 20) else: # Just give it the negative of its current velocity self.vel *= -1 self.pedestrian_wait_time = 8 class TrafficLightObj(WorldObj): def __init__(self, obj, domain_rand, safety_radius_mult): WorldObj.__init__(self, obj, domain_rand, safety_radius_mult) self.texs = [ load_texture(get_file_path("textures", "trafficlight_card0", "jpg")), load_texture(get_file_path("textures", "trafficlight_card1", "jpg")) ] self.time = 0 # Frequency and current pattern of the lights if self.domain_rand: self.freq = np.random.randint(4, 7) self.pattern = np.random.randint(0, 2) else: self.freq = 5 self.pattern = 0 # Use the selected pattern self.mesh.textures[0] = self.texs[self.pattern] def step(self, delta_time): """ Changes the light color periodically """ self.time += delta_time if round(self.time, 3) % self.freq == 0: # Swap patterns self.pattern ^= 1 self.mesh.textures[0] = self.texs[self.pattern] def is_green(self, direction='N'): if direction == 'N' or direction == 'S': if self.y_rot == 45 or self.y_rot == 135: return self.pattern == 0 elif self.y_rot == 225 or self.y_rot == 315: return self.pattern == 1 elif direction == 'E' or direction == 'W': if self.y_rot == 45 or self.y_rot == 135: return self.pattern == 1 elif self.y_rot == 225 or self.y_rot == 315: return self.pattern == 0 return False,是定义了车子的运动学属性吗

以下代码有定义小车的运动学属性吗# coding=utf-8 from .collision import * from .graphics import load_texture from .utils import get_file_path class WorldObj: def __init__(self, obj, domain_rand, safety_radius_mult): """ Initializes the object and its properties """ # XXX this is relied on by things but it is not always set # (Static analysis complains) self.visible = True # same self.color = (0, 0, 0) # maybe have an abstract method is_visible, get_color() self.process_obj_dict(obj, safety_radius_mult) self.domain_rand = domain_rand self.angle = self.y_rot * (math.pi / 180) self.generate_geometry() def generate_geometry(self): # Find corners and normal vectors assoc w. object self.obj_corners = generate_corners(self.pos, self.min_coords, self.max_coords, self.angle, self.scale) self.obj_norm = generate_norm(self.obj_corners) def process_obj_dict(self, obj, safety_radius_mult): self.kind = obj['kind'] self.mesh = obj['mesh'] self.pos = obj['pos'] self.scale = obj['scale'] self.y_rot = obj['y_rot'] self.optional = obj['optional'] self.min_coords = obj['mesh'].min_coords self.max_coords = obj['mesh'].max_coords self.static = obj['static'] self.safety_radius = safety_radius_mult *\ calculate_safety_radius(self.mesh, self.scale) def render(self, draw_bbox): """ Renders the object to screen """ if not self.visible: return from pyglet import gl # Draw the bounding box if draw_bbox: gl.glColor3f(1, 0, 0) gl.glBegin(gl.GL_LINE_LOOP) gl.glVertex3f(self.obj_corners.T[0, 0], 0.01, self.obj_corners.T[1, 0]) gl.glVertex3f(self.obj_corners.T[0, 1], 0.01, self.obj_corners.T[1, 1]) gl.glVertex3f(self.obj_corners.T[0, 2], 0.01, self.obj_corners.T[1, 2]) gl.glVertex3f(self.obj_corners.T[0, 3], 0.01, self.obj_corners.T[1, 3]) gl.glEnd() gl.glPushMatrix() gl.glTranslatef(*self.pos) gl.glScalef(self.scale, self.scale, self.scale) gl.glRotatef(self.y_rot, 0, 1, 0) gl.glColor3f(*self.color) self.mesh.render() gl.glPopMatrix() # Below are the functions that need to # be reimplemented for any dynamic object def check_collision(self, agent_corners, agent_norm): """ See if the agent collided with this object For static, return false (static collisions checked w numpy in a batch operation) """ if not self.static: raise NotImplementedError return False def proximity(self, agent_pos, agent_safety_rad): """ See if the agent is too close to this object For static, return 0 (static safedriving checked w numpy in a batch operation) """ if not self.static: raise NotImplementedError return 0.0 def step(self, delta_time): """ Use a motion model to move the object in the world """ if not self.static: raise NotImplementedError class DuckiebotObj(WorldObj): def __init__(self, obj, domain_rand, safety_radius_mult, wheel_dist, robot_width, robot_length, gain=2.0, trim=0.0, radius=0.0318, k=27.0, limit=1.0): WorldObj.__init__(self, obj, domain_rand, safety_radius_mult) if self.domain_rand: self.follow_dist = np.random.uniform(0.3, 0.4) self.velocity = np.random.uniform(0.05, 0.15) else: self.follow_dist = 0.3 self.velocity = 0.1 self.max_iterations = 1000 # TODO: Make these DR as well self.gain = gain self.trim = trim self.radius = radius self.k = k self.limit = limit self.wheel_dist = wheel_dist self.robot_width = robot_width self.robot_length = robot_length # FIXME: this does not follow the same signature as WorldOb def step(self, delta_time, closest_curve_point, objects): """ Take a step, implemented as a PID controller """ # Find the curve point closest to the agent, and the tangent at that point closest_point, closest_tangent = closest_curve_point(self.pos, self.angle) iterations = 0 lookup_distance = self.follow_dist curve_point = None while iterations < self.max_iterations: # Project a point ahead along the curve tangent, # then find the closest point to to that follow_point = closest_point + closest_tangent * lookup_distance curve_point, _ = closest_curve_point(follow_point, self.angle) # If we have a valid point on the curve, stop if curve_point is not None: break iterations += 1 lookup_distance *= 0.5 # Compute a normalized vector to the curve point point_vec = curve_point - self.pos point_vec /= np.linalg.norm(point_vec) dot = np.dot(self.get_right_vec(self.angle), point_vec) steering = self.gain * -dot self._update_pos([self.velocity, steering], delta_time) def get_dir_vec(self, angle): x = math.cos(angle) z = -math.sin(angle) return np.array([x, 0, z]) def get_right_vec(self, angle): x = math.sin(angle) z = math.cos(angle) return np.array([x, 0, z]) def check_collision(self, agent_corners, agent_norm): """ See if the agent collided with this object """ return intersects_single_obj( agent_corners, self.obj_corners.T, agent_norm, self.obj_norm ) def proximity(self, agent_pos, agent_safety_rad): """ See if the agent is too close to this object based on a heuristic for the "overlap" between their safety circles """ d = np.linalg.norm(agent_pos - self.pos) score = d - agent_safety_rad - self.safety_radius return min(0, score) def _update_pos(self, action, deltaTime): vel, angle = action # assuming same motor constants k for both motors k_r = self.k k_l = self.k # adjusting k by gain and trim k_r_inv = (self.gain + self.trim) / k_r k_l_inv = (self.gain - self.trim) / k_l omega_r = (vel + 0.5 * angle * self.wheel_dist) / self.radius omega_l = (vel - 0.5 * angle * self.wheel_dist) / self.radius # conversion from motor rotation rate to duty cycle u_r = omega_r * k_r_inv u_l = omega_l * k_l_inv # limiting output to limit, which is 1.0 for the duckiebot u_r_limited = max(min(u_r, self.limit), -self.limit) u_l_limited = max(min(u_l, self.limit), -self.limit) # If the wheel velocities are the same, then there is no rotation if u_l_limited == u_r_limited: self.pos = self.pos + deltaTime * u_l_limited * self.get_dir_vec(self.angle) return # Compute the angular rotation velocity about the ICC (center of curvature) w = (u_r_limited - u_l_limited) / self.wheel_dist # Compute the distance to the center of curvature r = (self.wheel_dist * (u_l_limited + u_r_limited)) / (2 * (u_l_limited - u_r_limited)) # Compute the rotation angle for this time step rotAngle = w * deltaTime # Rotate the robot's position around the center of rotation r_vec = self.get_right_vec(self.angle) px, py, pz = self.pos cx = px + r * r_vec[0] cz = pz + r * r_vec[2] npx, npz = rotate_point(px, pz, cx, cz, rotAngle) # Update position self.pos = np.array([npx, py, npz]) # Update the robot's direction angle self.angle += rotAngle self.y_rot += rotAngle * 180 / np.pi # Recompute the bounding boxes (BB) for the duckiebot self.obj_corners = agent_boundbox( self.pos, self.robot_width, self.robot_length, self.get_dir_vec(self.angle), self.get_right_vec(self.angle) ) class DuckieObj(WorldObj): def __init__(self, obj, domain_rand, safety_radius_mult, walk_distance): WorldObj.__init__(self, obj, domain_rand, safety_radius_mult) self.walk_distance = walk_distance + 0.25 # Dynamic duckie stuff # Randomize velocity and wait time if self.domain_rand: self.pedestrian_wait_time = np.random.randint(3, 20) self.vel = np.abs(np.random.normal(0.02, 0.005)) else: self.pedestrian_wait_time = 8 self.vel = 0.02 # Movement parameters self.heading = heading_vec(self.angle) self.start = np.copy(self.pos) self.center = self.pos self.pedestrian_active = False # Walk wiggle parameter self.wiggle = np.random.choice([14, 15, 16], 1) self.wiggle = np.pi / self.wiggle self.time = 0 def check_collision(self, agent_corners, agent_norm): """ See if the agent collided with this object """ return intersects_single_obj( agent_corners, self.obj_corners.T, agent_norm, self.obj_norm ) def proximity(self, agent_pos, agent_safety_rad): """ See if the agent is too close to this object based on a heuristic for the "overlap" between their safety circles """ d = np.linalg.norm(agent_pos - self.center) score = d - agent_safety_rad - self.safety_radius return min(0, score) def step(self, delta_time): """ Use a motion model to move the object in the world """ self.time += delta_time # If not walking, no need to do anything if not self.pedestrian_active: self.pedestrian_wait_time -= delta_time if self.pedestrian_wait_time <= 0: self.pedestrian_active = True return # Update centers and bounding box vel_adjust = self.heading * self.vel self.center += vel_adjust self.obj_corners += vel_adjust[[0, -1]] distance = np.linalg.norm(self.center - self.start) if distance > self.walk_distance: self.finish_walk() self.pos = self.center angle_delta = self.wiggle * math.sin(48 * self.time) self.y_rot = (self.angle + angle_delta) * (180 / np.pi) self.obj_norm = generate_norm(self.obj_corners) def finish_walk(self): """ After duckie crosses, update relevant attributes (vel, rot, wait time until next walk) """ self.start = np.copy(self.center) self.angle += np.pi self.pedestrian_active = False if self.domain_rand: # Assign a random velocity (in opp. direction) and a wait time # TODO: Fix this: This will go to 0 over time self.vel = -1 * np.sign(self.vel) * np.abs(np.random.normal(0.02, 0.005)) self.pedestrian_wait_time = np.random.randint(3, 20) else: # Just give it the negative of its current velocity self.vel *= -1 self.pedestrian_wait_time = 8 class TrafficLightObj(WorldObj): def __init__(self, obj, domain_rand, safety_radius_mult): WorldObj.__init__(self, obj, domain_rand, safety_radius_mult) self.texs = [ load_texture(get_file_path("textures", "trafficlight_card0", "jpg")), load_texture(get_file_path("textures", "trafficlight_card1", "jpg")) ] self.time = 0 # Frequency and current pattern of the lights if self.domain_rand: self.freq = np.random.randint(4, 7) self.pattern = np.random.randint(0, 2) else: self.freq = 5 self.pattern = 0 # Use the selected pattern self.mesh.textures[0] = self.texs[self.pattern] def step(self, delta_time): """ Changes the light color periodically """ self.time += delta_time if round(self.time, 3) % self.freq == 0: # Swap patterns self.pattern ^= 1 self.mesh.textures[0] = self.texs[self.pattern] def is_green(self, direction='N'): if direction == 'N' or direction == 'S': if self.y_rot == 45 or self.y_rot == 135: return self.pattern == 0 elif self.y_rot == 225 or self.y_rot == 315: return self.pattern == 1 elif direction == 'E' or direction == 'W': if self.y_rot == 45 or self.y_rot == 135: return self.pattern == 1 elif self.y_rot == 225 or self.y_rot == 315: return self.pattern == 0 return False

function constrained_lspia_b_spline() clc;clear; close all % 生成半圆测试数据(2000个点) theta = linspace(0, pi, 2000)'; X = [cos(theta), sin(theta)]; % 无噪声的半圆数据 % 初始化参数 n = 2000; % 数据点数量 m = 50; % 控制点数量 k = 3; % 三次B样条 max_iter = 1000;% 最大迭代次数 % 端点约束:起点和终点位置及切向量 start_point = X(1, :); end_point = X(end, :); start_tangent = [0, 1]; % 起点切向量 (0,1) end_tangent = [0, -1]; % 终点切向量 (0,-1) % 1. 参数化(累积弦长法) chords = vecnorm(diff(X), 2, 2); u = [0; cumsum(chords)/sum(chords)]; % 2. 初始化控制点(带约束) P = initialize_control_points(X, m, start_point, end_point, start_tangent, end_tangent); % 3. 创建带约束的节点向量 knots = constrained_knot_vector(u, k, m); % 4. 预计算基函数矩阵(稀疏存储) N = zeros(n, m); for i = 1:n span = findSpan(u(i), knots, m); basis = basisFunctions(u(i), span, knots, k); N(i, span-k:span) = basis; end % 5. LSPIA迭代(带约束更新) lambda = 1.0; % 松弛因子 for iter = 1:max_iter % 计算当前拟合点 Q = N * P; % 计算残差向量 R = X - Q; % 计算控制点增量 deltaP = (N' * R) * lambda / n; % 带约束的更新:固定起点和终点位置及切向量 P = constrained_update(P, deltaP, start_point, end_point, start_tangent, end_tangent); % 检查收敛条件 if norm(deltaP, 'fro') < 1e-3 break; end end % 6. 结果验证和可视化 % 验证端点约束 verify_endpoint_constraints(N, P, start_point, end_point, start_tangent, end_tangent, knots, k); % 生成拟合曲线评估点 u_eval = linspace(0, 1, 1000); curve = zeros(length(u_eval), 2); for i = 1:length(u_eval) span = findSpan(u_eval(i), knots, m); basis = basisFunctions(u_eval(i), span, knots, k); curve(i,:) = basis * P(span-k:span, :); end % 可视化结果 figure; plot(X(:,1), X(:,2), '.', 'MarkerSize', 4, 'Color', [0.7 0.7 0.7]); hold on; plot(P(:,1), P(:,2), 'ro-', 'LineWidth', 1.5); plot(curve(:,1), curve(:,2), 'b-', 'LineWidth', 2); % 标记端点和切向量 quiver(start_point(1), start_point(2), start_tangent(1)*0.2, start_tangent(2)*0.2, ... 'LineWidth', 2, 'Color', 'g', 'MaxHeadSize', 0.5); quiver(end_point(1), end_point(2), end_tangent(1)*0.2, end_tangent(2)*0.2, ... 'LineWidth', 2, 'Color', 'm', 'MaxHeadSize', 0.5); legend('原始数据', '控制点', '拟合曲线', '起点切向量', '终点切向量'); title(sprintf('带约束的LSPIA B样条拟合 (%d次迭代)', iter)); axis equal; grid on; end % 带约束的初始化控制点 function P = initialize_control_points(X, m, start_point, end_point, start_tangent, end_tangent) % 初始化控制点(均匀采样) idx = round(linspace(1, size(X,1), m)); P = X(idx, :); % 应用端点约束 P(1, :) = start_point; P(end, :) = end_point; % 应用切向量约束(通过第二个和倒数第二个控制点) P(2, :) = start_point + start_tangent * 0.3; % 调整系数以控制切向量长度 P(end-1, :) = end_point + end_tangent * 0.3; end % 带端点约束的节点向量生成 function knots = constrained_knot_vector(u, k, m) % 创建均匀节点向量 knots = linspace(0, 1, m - k); % 添加端点重复以满足插值条件 knots = [zeros(1, k), knots, ones(1, k)]; end % 带约束的控制点更新 function P_new = constrained_update(P, deltaP, start_point, end_point, start_tangent, end_tangent) P_new = P + deltaP; % 固定起点和终点位置 P_new(1, :) = start_point; P_new(end, :) = end_point; % 保持切向量方向不变(只允许在切向量方向上更新) start_dir = P_new(2, :) - start_point; start_dir = start_dir / norm(start_dir); start_tangent = start_tangent / norm(start_tangent); % 投影到约束方向 P_new(2, :) = start_point + 0.1*start_tangent * dot(start_dir, start_tangent) * norm(P_new(2, :) - start_point); % 同样处理终点 end_dir = P_new(end-1, :) - end_point; end_dir = end_dir / norm(end_dir); end_tangent = end_tangent / norm(end_tangent); P_new(end-1, :) = end_point + 0.1*end_tangent * dot(end_dir, end_tangent) * norm(P_new(end-1, :) - end_point); end % 端点约束验证 function verify_endpoint_constraints(N, P, start_point, end_point, start_tangent, end_tangent, knots, k) % 验证起点位置 fitted_start = N(1, :) * P; position_error_start = norm(fitted_start - start_point); fprintf('起点位置误差: %.2e\n', position_error_start); % 验证终点位置 fitted_end = N(end, :) * P; position_error_end = norm(fitted_end - end_point); fprintf('终点位置误差: %.2e\n', position_error_end); % 验证起点切向量 u = 0.001; % 微小参数变化 span0 = findSpan(0, knots, size(P,1)); basis0 = basisFunctions(0, span0, knots, k); point0 = basis0 * P(span0-k:span0, :); span1 = findSpan(u, knots, size(P,1)); basis1 = basisFunctions(u, span1, knots, k); point1 = basis1 * P(span1-k:span1, :); fitted_tangent = (point1 - point0) / u; fitted_tangent = fitted_tangent / norm(fitted_tangent); tangent_error_start = acos(dot(fitted_tangent, start_tangent/norm(start_tangent))); fprintf('起点切向量角度误差: %.2f 度\n', rad2deg(tangent_error_start)); % 验证终点切向量 u_end = 1 - u; span_end0 = findSpan(1, knots, size(P,1)); basis_end0 = basisFunctions(1, span_end0, knots, k); point_end0 = basis_end0 * P(span_end0-k:span_end0, :); span_end1 = findSpan(u_end, knots, size(P,1)); basis_end1 = basisFunctions(u_end, span_end1, knots, k); point_end1 = basis_end1 * P(span_end1-k:span_end1, :); fitted_tangent_end = (point_end0 - point_end1) / u; fitted_tangent_end = fitted_tangent_end / norm(fitted_tangent_end); tangent_error_end = acos(dot(fitted_tangent_end, end_tangent/norm(end_tangent))); fprintf('终点切向量角度误差: %.2f 度\n', rad2deg(tangent_error_end)); end % 计算节点区间索引 function span = findSpan(u, knots, n_ctrl) if u >= knots(n_ctrl+1) span = n_ctrl - 1; return; end low = 1; high = n_ctrl + 1; mid = floor((low+high)/2); while (u < knots(mid)) || (u >= knots(mid+1)) if u < knots(mid) high = mid; else low = mid; end mid = floor((low+high)/2); end span = mid; end % 计算非零基函数 function N = basisFunctions(u, span, knots, k) N = zeros(1, k+1); left = zeros(1, k+1); right = zeros(1, k+1); N(1) = 1.0; for j = 1:k left(j+1) = u - knots(span+1-j); right(j+1) = knots(span+j) - u; saved = 0.0; for r = 0:j-1 temp = N(r+1)/(right(r+2)+left(j-r+1)); N(r+1) = saved + right(r+2)*temp; saved = left(j-r+1)*temp; end N(j+1) = saved; end end 把这个转成c语言代码

import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from scipy.interpolate import CubicSpline # ====================== # 1. 轨道参数化(抛物线) # ====================== t_points = np.linspace(0, 10, 100) x_track = np.linspace(0, 100, 100) y_track = -0.1 * (x_track - 50) ** 2 + 30 # 抛物线轨道 # 创建样条曲线(确保平滑) cs_x = CubicSpline(t_points, x_track) cs_y = CubicSpline(t_points, y_track) # ====================== # 2. 物理模型参数 # ====================== mass = 1.0 # 小车质量 (kg) g = 9.8 # 重力加速度 friction = 0.005 # 摩擦系数 z0 = cs_y(0) # 初始高度 # ====================== # 3. 运动学计算函数(修正括号问题) # ====================== def compute_motion(t): # 当前位置 x = cs_x(t) y = cs_y(t) # 一阶导数(速度方向) dx_dt = cs_x.derivative()(t) dy_dt = cs_y.derivative()(t) speed_dir = np.array([dx_dt, dy_dt]) speed_dir /= max(np.linalg.norm(speed_dir), 1e-5) # 单位化 # 根据能量守恒计算速度 delta_h = z0 - y v_squared = max(2 * g * delta_h - friction * t, 0) v = np.sqrt(v_squared) # 加速度计算(切向+法向) curvature = np.abs(cs_y.derivative(2)(t)) / (1 + cs_y.derivative(1)(t) ** 2) ** 1.5 a_tangent = (g * np.sin(np.arctan(cs_y.derivative(1)(t)))) - friction a_normal = v ** 2 * curvature # 修正括号问题(关键修改点) acceleration = a_tangent * speed_dir + a_normal * np.array([-speed_dir[1], speed_dir[0]]) return (x, y), v * speed_dir, acceleration # ====================== # 4. 可视化初始化 # ====================== fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) # 轨道绘制 ax1.plot(x_track, y_track, 'gray', linewidth=3) ax1.set_xlim(0, 100) ax1.set_ylim(-10, 40) cart = ax1.scatter([], [], s=100, c='red', zorder=3) acc_arrow = ax1.quiver(0, 0, 0, 0, color='blue', scale=50, zorder=2) # 能量曲线初始化 ax2.set_xlim(0, 10) ax2.set_ylim(0, 2000) energy_line, = ax2.plot([], [], 'r-', label='动能') potential_line, = ax2.plot([], [], 'b-', label='势能') total_line, = ax2.plot([], [], 'g--', label='总能量') ax2.legend() # ====================== # 5. 动画更新函数 # ====================== def update(frame): t = frame * 0.2 # 时间缩放 # 计算物理量 (x, y), vel, acc = compute_motion(t) # 更新小车位置 cart.set_offsets([[x, y]]) # 更新加速度箭头(优化显示) ax1.patches = [] # 清除旧箭头 arrow_scale = 0.5 # 缩放系数 acc_arrow = ax1.quiver(x, y, acc[0] * arrow_scale, acc[1] * arrow_scale, color='darkblue', scale=50, width=0.005, headwidth=5) # 更新能量曲线 kinetic = 0.5 * mass * np.linalg.norm(vel) ** 2 potential = mass * g * y current_time = t # 动态调整坐标范围 ax2.set_xlim(left=max(0, current_time - 5), right=max(10, current_time + 1)) ax2.set_ylim(bottom=0, top=max(2000, kinetic + potential + 100)) return cart, acc_arrow, energy_line, potential_line, total_line # ====================== # 6. 运行动画并导出 # ====================== ani = FuncAnimation(fig, update, frames=150, interval=50, blit=True) plt.show()这是我的代码,以下是它报的错:D:\anaconda3\python.exe "E:\PYCHARM\PycharmProjects\pythonProject\Coriolis force\py1.py" D:\PyCharm 2024.1.4\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py:126: UserWarning: Glyph 21160 (\N{CJK UNIFIED IDEOGRAPH-52A8}) missing from current font. FigureCanvasAgg.draw(self) D:\PyCharm 2024.1.4\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py:126: UserWarning: Glyph 33021 (\N{CJK UNIFIED IDEOGRAPH-80FD}) missing from current font. FigureCanvasAgg.draw(self) D:\PyCharm 2024.1.4\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py:126: UserWarning: Glyph 21183 (\N{CJK UNIFIED IDEOGRAPH-52BF}) missing from current font. FigureCanvasAgg.draw(self) D:\PyCharm 2024.1.4\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py:126: UserWarning: Glyph 24635 (\N{CJK UNIFIED IDEOGRAPH-603B}) missing from current font. FigureCanvasAgg.draw(self) D:\PyCharm 2024.1.4\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py:126: UserWarning: Glyph 37327 (\N{CJK UNIFIED IDEOGRAPH-91CF}) missing from current font. FigureCanvasAgg.draw(self) Traceback (most recent call last): File "E:\PYCHARM\PycharmProjects\pythonProject\Coriolis force\py1.py", line 112, in <module> ani = FuncAnimation(fig, update, frames=150, interval=50, blit=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 1695, in __init__ super().__init__(fig, **kwargs) File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 1417, in __init__ super().__init__(fig, event_source=event_source, *args, **kwargs) File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 888, in __init__ self._setup_blit() File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 1211, in _setup_blit self._post_draw(None, self._blit) File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 1166, in _post_draw self._fig.canvas.draw_idle() File "D:\anaconda3\Lib\site-packages\matplotlib\backend_bases.py", line 1893, in draw_idle self.draw(*args, **kwargs) File "D:\PyCharm 2024.1.4\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py", line 126, in draw FigureCanvasAgg.draw(self) File "D:\anaconda3\Lib\site-packages\matplotlib\backends\backend_agg.py", line 388, in draw self.figure.draw(self.renderer) File "D:\anaconda3\Lib\site-packages\matplotlib\artist.py", line 95, in draw_wrapper result = draw(artist, renderer, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\Lib\site-packages\matplotlib\artist.py", line 72, in draw_wrapper return draw(artist, renderer) ^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\Lib\site-packages\matplotlib\figure.py", line 3164, in draw DrawEvent("draw_event", self.canvas, renderer)._process() File "D:\anaconda3\Lib\site-packages\matplotlib\backend_bases.py", line 1271, in _process self.canvas.callbacks.process(self.name, self) File "D:\anaconda3\Lib\site-packages\matplotlib\cbook.py", line 303, in process self.exception_handler(exc) File "D:\anaconda3\Lib\site-packages\matplotlib\cbook.py", line 87, in _exception_printer raise exc File "D:\anaconda3\Lib\site-packages\matplotlib\cbook.py", line 298, in process func(*args, **kwargs) File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 912, in _start self._init_draw() File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 1749, in _init_draw self._draw_frame(frame_data) File "D:\anaconda3\Lib\site-packages\matplotlib\animation.py", line 1768, in _draw_frame self._drawn_artists = self._func(framedata, *self._args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\PYCHARM\PycharmProjects\pythonProject\Coriolis force\py1.py", line 90, in update ax1.patches = [] # 清除旧箭头 ^^^^^^^^^^^ AttributeError: property 'patches' of 'Axes' object has no setter 进程已结束,退出代码为 1

def extract_boundary_with_integral_invariant(pcd, radius=0.1, k=2.0, min_neighbors=5): """ 使用积分不变量算法提取点云边界 参数: pcd (o3d.geometry.PointCloud): 输入点云 radius (float): 邻域搜索半径 k (float): 阈值系数 (T = μ - k*σ) min_neighbors (int): 后处理中保留边界点所需的最小邻域边界点数量 返回: boundary_mask (np.array): 边界点布尔掩码 """ # ---------------------- 1. 预处理 ---------------------- # 统计滤波去噪 cl, _ = pcd.remove_statistical_outlier(nb_neighbors=10, std_ratio=5.0) # ---------------------- 2. 法线估计 ---------------------- cl.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=radius * 2, max_nn=30)) cl.orient_normals_consistent_tangent_plane(k=15) # 统一法线方向 # ---------------------- 3. 构建KD-tree加速搜索 ---------------------- points = np.asarray(cl.points) normals = np.asarray(cl.normals) tree = KDTree(points) # ---------------------- 4. 计算积分不变量 ---------------------- integral_values = [] for i in range(len(points)): # 查询球形邻域 neighbors = tree.query_ball_point(points[i], radius) if len(neighbors) < 3: integral_values.append(0) continue # 获取邻域点相对坐标 neighbor_points = points[neighbors] - points[i] # 构建局部坐标系 (z轴为法线方向) z_axis = normals[i] x_axis = np.random.randn(3) # 随机初始向量 x_axis -= x_axis.dot(z_axis) * z_axis x_axis /= np.linalg.norm(x_axis) y_axis = np.cross(z_axis, x_axis) # 投影到切平面 (忽略法线方向) proj_coords = np.array([neighbor_points.dot(x_axis), neighbor_points.dot(y_axis)]).T # 统计有效投影点数量作为积分值 integral_values.append(len(proj_coords)) # ---------------------- 5. 阈值处理 ---------------------- integrals = np.array(integral_values) mean = integrals.mean() std = integrals.std() threshold = mean - k * std boundary_mask = (integrals < threshold) # ---------------------- 6. 后处理:去除孤立边界点 ---------------------- boundary_indices = np.where(boundary_mask)[0] boundary_tree = KDTree(points[boundary_mask]) valid_boundary = np.zeros(len(points), dtype=bool) for idx in boundary_indices: # 检查周围radius内是否有足够多的边界点 count = boundary_tree.query_ball_point(points[idx], radius).__len__() if count >= min_neighbors: valid_boundary[idx] = True return valid_boundary # ====================== 使用示例 ====================== if __name__ == "__main__": # 1. 读取点云 (替换为你的PCD文件路径) pcd = o3d.io.read_point_cloud("model.pcd") # 检查点云是否为空 if len(pcd.points) == 0: print("读取的点云文件为空,请检查文件路径和内容。") else: print("成功读取点云,点数:", len(pcd.points)) # 2. 提取边界 boundary_mask = extract_boundary_with_integral_invariant(pcd, radius=2.0, k=1.5, min_neighbors=3) # 检查是否有边界点 if np.any(boundary_mask): # 3. 可视化结果 boundary_pcd = pcd.select_by_index(np.where(boundary_mask)[0]) boundary_pcd.paint_uniform_color([1, 0, 0]) # 红色为边界 o3d.visualization.draw_geometries([pcd, boundary_pcd]) else: print("未找到边界点,请调整参数重新尝试。")能否将其中的边界点提取出来并且生成线轮廓

#重要的函数 #1 ok, corners = detect_chessboard(img, rows, cols) 角点检测 #2 cv2.drawChessboardCorners(img, (cols, rows), corners, ok) 画角点 #3 ok, camera_mat, dist_coeff, rvecs, tvecs = cv2.calibrateCamera( 标定 #4 object_points, img_points, img_wh, camera_mat, dist_coeff, # criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 100, 1e-6)) #5 proj_points = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_mat, dist_coeff)[0] 重投影 import os import cv2 import numpy as np np.set_printoptions(precision=4, suppress=True) #关闭科学计数法,便于显示 def image_from_camera(): # 从摄像头中读取图像并保存(按键盘s键, 按ESC键退出程序) cap = cv2.VideoCapture(0) assert cap.isOpened(), 'Fail to open camera!' # 指定一个目录用于存放摄像头中截取的图像 save_dir = '../data' # 图像文件命名范式: 0001.jpg, 0002.jpg, ... name_format = '%04d.jpg' name_idx = 1 while True: ok, img = cap.read() assert ok, 'Fail to read camera!' cv2.imshow('1', img) key = cv2.waitKey(1) #以1ms为限制等待 if key == -1: # 什么键也没有按下 continue if (key == 27): # ESC键 break if chr(key) == 's': # s 键 name = os.path.join(save_dir, name_format % name_idx) name_idx += 1 cv2.imwrite(name, img) print('Saved image to \'%s\'', name) return def detect_chessboard(img, rows=12, cols=6, subpix_sz=5): """ 从棋盘格图像中检测棋盘格角点 :param img: 棋盘格图像,BGR或gray :param rows: 角点行数(不是方块的个数, 不算边缘角点) height :param cols: 角点列数 width :param subpix_sz: 对棋盘格角点坐标优化时的局部搜索范围,应不大于图像中最小方块的边长,单位是像素 :return: 检测的角点,shape=(rows*cols,1,2)。如果实际检测的角点数目小于rows*cols则报错。 corners (num,1,2) """ ok, corners = cv2.findChessboardCorners( img, (cols, rows), cv2.CALIB_CB_ADAPTIVE_THRESH | cv2.CALIB_CB_NORMALIZE_IMAGE | cv2.CALIB_CB_FAST_CHECK) if ok: #亚像素级优化(GRAY),增加其准确性 #zeroZone设置排除的区域,设置为(-1,-1)表示全部区域都检测 #criteria迭代终止条件(次数或精度) corners = cv2.cornerSubPix( img if len(img.shape) == 2 else cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), corners, (subpix_sz, subpix_sz), (-1, -1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.01)) return ok, corners if __name__ == '__main__': # 第一步,用摄像头采集一些棋盘格图片 # image_from_camera() # 第二步,读取每张图片,进行角点检测 imgs = [] # 所选取的图像 img_paths = [] # 对应的路径 img_points = [] #9,72,1,2# 从图像中检测的角点 cols, rows = 12, 6 img_num = len(os.listdir(r'../data')) draw = False for i in range(1, img_num+1): img_path = '../data/%04d.jpg' % i img = cv2.imread(img_path) #BGR或GRAY格式 assert img is not None, 'Fail to read image: ' + img_path ok, corners = detect_chessboard(img, rows, cols) if not ok: cv2.putText(img, 'Fail to detect corners!', org=(50, 200), fontFace=cv2.FONT_HERSHEY_PLAIN , fontScale=4, color=(255, 255, 0), thickness=2) cv2.imshow('chessboard-corners-%04d'%i, img) cv2.waitKey() cv2.destroyWindow('chessboard-corners-%04d'%i) else: if draw: cv2.drawChessboardCorners(img, (cols, rows), corners, ok) cv2.imshow('chessboard-corners-%04d'%i, img) cv2.waitKey() cv2.destroyWindow('chessboard-corners-%04d'%i) imgs.append(img) img_paths.append(img_path) img_points.append(corners) nimgs = len(imgs) img_wh = img.shape[1::-1] # (W,H)图像的宽以及高,所有图片必须具有相同尺寸,标定时要用到 print('Got {} images for camera calibration.'.format(nimgs)) # 第三步,进行相机标定 # 先构造世界坐标系下的角点坐标,角点应该进行正确排序:先是第一行第一列,然后第一行第二列,... object_points = np.zeros((rows * cols, 1, 3), dtype='float32') square_sz = 138 #mm any constant (edge length of eac chess board square, in millimeters or meters) for r in range(rows): for c in range(cols): object_points[r * cols + c, 0, 0] = c * square_sz # world coordinate - X 行方向 object_points[r * cols + c, 0, 1] = r * square_sz # world coordinate - Y 列方向 object_points = [object_points] * nimgs #9,72,1,3 # 标定 camera_mat = np.eye(3, 3) # 如果有初始相机参数,可以在这里进行设置,将提高标定准确率 dist_coeff = np.zeros((5, 1)) # 畸变参数k1 k2 k3 p1 p2 ok, camera_mat, dist_coeff, rvecs, tvecs = cv2.calibrateCamera( object_points, img_points, img_wh, camera_mat, dist_coeff, criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 100, 1e-6)) #R (9,3,1) T (9,3,1) # 每个旋转向量 rvec 的尺寸为 (3, 1),表示一个三维向量。这个向量通常是以列向量的形式表示的,包含三个元素,分别对应于绕 x、y、z 轴的旋转角度(以弧度为单位) assert ok and cv2.checkRange(camera_mat) and cv2.checkRange(dist_coeff), 'Calibration failed!' #checkRange预测是否在有效范围之内 # 保存标定结果 print('camera_mat:\n', camera_mat) print('dist_coeff:\n', dist_coeff) np.save(r'../output/camera_mat', camera_mat) np.save(r'../output/dist_coeff', dist_coeff) print('Saved calibration results to: camera_mat.npy and dist_coeff.npy') # 第四步,做一些简单的验证 # 计算标定误差:将物理点投影到图像空间中,并与对应的图像点进行比较,计算重投影误差 for i in range(nimgs): proj_points = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_mat, dist_coeff)[0] #第二个返回时雅可比矩阵,一般用不上 average_err = cv2.norm(proj_points, img_points[i], cv2.NORM_L2) / len(img_points[i]) #单位mm print('Reprojection error for image \'%s\': %g' % (img_paths[i], average_err)) # 对相机畸变进行补偿,得到去畸变的图像 for i in range(nimgs): img_undistort = cv2.undistort(imgs[i], camera_mat, dist_coeff) #校正 cv2.imshow('original', imgs[i]) cv2.imshow('undistort', img_undistort) if cv2.waitKey() == 27: break 如果现在导入的不是棋盘格图片,而是足够多的世界坐标和像素坐标的对应关系,帮我修改这段代码

import open3d as o3d import numpy as np import matplotlib.pyplot as plt from matplotlib import cm def calculate_point_roughness(pcd, k=30): """ 计算点云中每个点的粗糙度。 参数: - pcd: open3d.geometry.PointCloud 对象 - k: 邻域大小 返回: - roughness: 每个点的粗糙度列表 """ # 计算法向量 pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=k)) pcd.orient_normals_consistent_tangent_plane(k) # 构建KD树 kdtree = o3d.geometry.KDTreeFlann(pcd) # 获取点和法向量 points = np.asarray(pcd.points) normals = np.asarray(pcd.normals) roughness = [] for i in range(len(points)): # 获取点的邻域 [_, idx, _] = kdtree.search_knn_vector_3d(points[i], k) neighbors = points[idx[1:]] # 排除自身 # 计算到局部平面的距离 dists = np.abs((neighbors - points[i]) @ normals[i]) roughness.append(np.std(dists)) return roughness # 读取点云数据 pcd = o3d.io.read_point_cloud("cloud.ply") # 计算点粗糙度 roughness = calculate_point_roughness(pcd) # 打印前十个点的粗糙度 print(roughness[:10]) # 使用伪颜色进行可视化 # 将粗糙度值归一化到0到1之间 normalized_roughness = (roughness - np.min(roughness)) / (np.max(roughness) - np.min(roughness)) # 使用Matplotlib的colormap将归一化的粗糙度值映射到颜色 colormap = cm.get_cmap("jet") colors = colormap(normalized_roughness)[:, :3] # 只取RGB值 # 将颜色应用到点云 pcd.colors = o3d.utility.Vector3dVector(colors) # 可视化点云 o3d.visualization.draw_geometries([pcd])

最新推荐

recommend-type

PLC控制变频器:三菱与汇川PLC通过485通讯板实现变频器正反转及调速控制

内容概要:本文介绍了如何利用三菱和汇川PLC通过485通讯板实现变频器的正转、反转及调速控制。主要内容涵盖硬件配置、软件编程、具体控制逻辑及上机测试。文中详细描述了各个步骤的操作方法和注意事项,包括关键寄存器的设置及其含义。程序中有详细的中文注释,便于理解和维护。最终通过上机测试验证系统的稳定性和可靠性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和变频器控制的专业人士。 使用场景及目标:适用于需要对电机进行精确控制的工业应用场景,如生产线、机械设备等。目标是提高控制系统灵活性和效率,确保系统稳定可靠。 其他说明:本文不仅提供理论指导,还附带实际操作经验,有助于读者更好地掌握相关技术和应用。
recommend-type

Python桌面版数独(五版)-优化选择模式触发新棋盘生成

Python桌面版数独(五版)-优化选择模式触发新棋盘生成
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。
recommend-type

【进阶Python绘图】:掌握matplotlib坐标轴刻度间隔的高级技巧,让你的图表脱颖而出

# 摘要 本文系统地探讨了matplotlib库中坐标轴刻度间隔的定制与优化技术。首先概述了matplotlib坐标轴刻度间隔的基本概念及其在图表中的重要性,接