border-left高度怎么改小

时间: 2023-10-10 10:10:22 浏览: 201
要改变 `border-left` 的高度,您可以使用 `border-left-width` 属性来控制边框的宽度。默认情况下,边框的宽度是 `medium`,您可以将其设置为较小的值,例如 `thin` 或具体的像素值。 以下是几个示例: 1. 使用具体的像素值: ```css border-left-width: 2px; ``` 2. 使用预定义的值 `thin`: ```css border-left-width: thin; ``` 3. 使用百分比值: ```css border-left-width: 20%; ``` 请根据您的需求选择适合的方式来改变 `border-left` 的高度。
相关问题

CSS属性,增加单元格内的文本自动换行单元格高度自动调整, .scr-table { width: 80%; height: auto; margin-top: 30px; border-spacing: 0; text-align: center; border-top: 1px solid #e8e8e8; border-left: 1px solid #e8e8e8; table-layout: fixed; margin-left: 5%; margin-right: 5%; } .scr-table th { padding: 5px; background: #63a2e8; border-right: 1px solid #e8e8e8; border-bottom: 1px solid #e8e8e8; font-weight: 300; font-size: 6px; line-height: 15px; } .scr-table td { width: auto; padding: 5px; border-right: 1px solid #e8e8e8; border-bottom: 1px solid #e8e8e8; white-space: nowrap; overflow: hidden; font-size: 6px; text-align: left; height: auto; } .scr-table tr { width: auto; height: auto; }

根据你提供的 CSS 代码,你想要实现单元格内文本的自动换行,并且希望单元格的高度能够自动调整。以下是对你的代码的建议修改: ```css .scr-table { width: 80%; margin-top: 30px; border-spacing: 0; text-align: center; border-top: 1px solid #e8e8e8; border-left: 1px solid #e8e8e8; table-layout: fixed; margin-left: 5%; margin-right: 5%; } .scr-table th { padding: 5px; background: #63a2e8; border-right: 1px solid #e8e8e8; border-bottom: 1px solid #e8e8e8; font-weight: 300; font-size: 6px; line-height: 15px; } .scr-table td { padding: 5px; border-right: 1px solid #e8e8e8; border-bottom: 1px solid #e8e8e8; white-space: normal; /* 修改为 normal */ word-break: break-word; /* 添加此属性 */ font-size: 6px; text-align: left; } .scr-table tr { height: auto; } ``` 这些修改会将 `white-space` 属性设置为 `normal`,使文本自动换行;并且添加了 `word-break` 属性,以确保长单词或 URL 在必要时进行断行。 希望这些修改能满足你的需求。如果还有其他问题,请随时提问。

.log{ position: absolute; top: 5%; left: 20%; border: 3px solid black; width: 1000px; padding-left: 50px; min-height: 1100px; border-radius: 5%; }如何用JS修改这串代码的min-height属性为随页面高度自动变化

您可以使用window.innerHeight属性获取浏览器窗口的高度,然后将其赋值给min-height属性。以下是示例代码: ```javascript let log = document.querySelector('.log'); log.style.minHeight = `${window.innerHeight}px`; window.addEventListener('resize', () => { log.style.minHeight = `${window.innerHeight}px`; }); ``` 这段代码将获取log元素,将其min-height属性设置为浏览器窗口的高度,并添加一个事件监听器,以便在窗口大小调整时更新min-height属性。
阅读全文

相关推荐

#include "images.h" uint8 l_border[MT9V03X_H];//左线数组 uint8 r_border[MT9V03X_H];//右线数组 uint8 center_line[MT9V03X_H];//中线数组 /*变量声明*/ //uint8 original_image[MT9V03X_H][MT9V03X_W]; uint8 bin_image[MT9V03X_H][MT9V03X_W];//图像数组 uint8 image_thereshold_last = 0;// uint8 image_thereshold;//图像分割阈值 //------------------------------------------------------------------------------------------------------------------ // @函数功能 求绝对值 // @函数返回 绝对值 //------------------------------------------------------------------------------------------------------------------ int my_abs(int value) { if(value>=0) return value; else return -value; } //数值范围限制 int16 limit_a_b(int16 x, int a, int b) { if(x<a) x = a; if(x>b) x = b; return x; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 求x,y中的最小值 // @函数返回 两值中的最小值 //------------------------------------------------------------------------------------------------------------------ int16 limit1(int16 x, int16 y) { if (x > y) return y; else if (x < -y) return -y; else return x; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 获得一副灰度图像 // @函数返回 灰度图像数组original_image //------------------------------------------------------------------------------------------------------------------ void Get_image(uint8(*mt9v03x_image)[MT9V03X_W]) { uint8 i = 0, j = 0; for (i = 0; i < MT9V03X_H; i += 1) { for (j = 0; j <MT9V03X_W; j += 1) { bin_image[i][j] = mt9v03x_image[i][j]; } } } //将原始图像复制到bin_image数组 //------------------------------------------------------------------------------------------------------------------ // @函数功能 大津法求动态阈值 // @函数返回 动态阈值Threshold //------------------------------------------------------------------------------------------------------------------ uint8 OtsuThreshold(uint8 *image) { uint8 Pixel_Max = 0; uint8 Pixel_Min = 255; //uint16 width = MT9V03X_W / use_num; //uint16 height = MT9V03X_H / use_num; int pixelCount[GrayScale]; //各像素GrayScale的个数pixelCount 一维数组 float pixelPro[GrayScale]; //各像素GrayScale所占百分比pixelPro 一维数组 int16 i = 0; int16 j = 0; int16 pixelSum = MT9V03X_W * MT9V03X_H / 4; //pixelSum是获取总的图像像素个数的1/4,相应下面轮询时高和宽都是以2为单位自增 uint8 threshold = 0; uint8* data = image; //指向像素数据的指针 for(i = 0;i < GrayScale;i++) { pixelCount[i] = 0; pixelPro[i] = 0; } uint32 gray_sum = 0; //统计灰度图中每个像素在整幅图像中的个数 for(i = 0;i < MT9V03X_H;i += 2) { for(j = 0;j < MT9V03X_W; j += 2) { pixelCount[(int)data[i * MT9V03X_W + j]]++; //将当前的点的像素值作为计数数组的下标 gray_sum += (int)data[i * MT9V03X_W + j]; //灰度值总和 if(data[i * MT9V03X_W + j] > Pixel_Max) { Pixel_Max = data[i * MT9V03X_W + j]; } if(data[i * MT9V03X_W + j] < Pixel_Min) { Pixel_Min = data[i * MT9V03X_W + j]; } } } //计算每个像素值的点在整幅图像中的比例 for(i = Pixel_Min;i < Pixel_Max;i++) { pixelPro[i] = (float)pixelCount[i] / pixelSum; } //遍历灰度值 float w0,w1,u0tmp,u1tmp,u0,u1,deltaTmp,deltaMax = 0; w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = 0; for(j = Pixel_Min;j < Pixel_Max;j++) { w0 += pixelPro[j]; //背景部分每个灰度值的像素点所占比例之和 即背景部分的比例 u0tmp += j * pixelPro[j]; //背景部分 每个灰度值的点的比例 *灰度值 w1 = 1 - w0; u1tmp = gray_sum / pixelSum-u0tmp; u0 = u0tmp / w0; //背景平均灰度 u1 = u1tmp / w1; //前景平均灰度 deltaTmp = (float)(w0 * w1 * (u0 - u1) * (u0 - u1)); if(deltaTmp > deltaMax) { deltaMax = deltaTmp; threshold = (uint8)j; } if(deltaTmp < deltaMax) { break; } } //限幅 if(threshold > 25 && threshold < 235) { image_thereshold_last = threshold; } else { threshold = image_thereshold_last; } return threshold; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 图像二值化,大津法 // @函数返回 二值化图像数组bin_image //------------------------------------------------------------------------------------------------------------------ void turn_to_bin(void) { uint8 i,j; image_thereshold = OtsuThreshold(bin_image[0]); //ips114_show_int(189,0,image_thereshold,5); for(i = 0;i < MT9V03X_H;i++) { for(j = 0;j < MT9V03X_W;j++) { if(bin_image[i][j] > image_thereshold) { bin_image[i][j] = 255; } else { bin_image[i][j] = 0; } } } /* for(i = 40;i < MT9V03X_H;i++) { for(j = 0;j < MT9V03X_W;j++) { if(bin_image[i][j] < image_thereshold) { bin_image[i][j] = 0; } else { bin_image[i][j] =255; } } }*/ } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找两个边界的边界点作为八邻域循环的起始点 // @参数说明 输入任意行数 // @函数返回 无 //------------------------------------------------------------------------------------------------------------------ uint8 start_point_l[2] = { 0 };//左边起点的x,y值 uint8 start_point_r[2] = { 0 };//右边起点的x,y值 uint8 get_start_point(uint8 start_row) { uint8 i = 0,j = MT9V03X_W/2,l_found = 0,r_found = 0,num = 0; //清零 start_point_l[0] = 0;//左x start_point_l[1] = 0;//左y start_point_r[0] = 0;//右x start_point_r[1] = 0;//右y //大致定位白线 for(num = 0;num < MT9V03X_W/2 - 15;num = num + 10) { if(bin_image[start_row][j + num] == 255) { j = j + num; break; } if(bin_image[start_row][j - num] == 255) { j = j - num; break; } } //从中间往左边,先找起点 for (i = j; i > border_min; i--) { start_point_l[0] = i;//x start_point_l[1] = start_row;//y if (bin_image[start_row][i] == 255 && bin_image[start_row][i - 1] == 0) { //printf("找到左边起点image[%d][%d]\n", start_row,i); l_found = 1; break; } } for (i = j; i < border_max; i++) { start_point_r[0] = i;//x start_point_r[1] = start_row;//y if (bin_image[start_row][i] == 255 && bin_image[start_row][i + 1] == 0) { //printf("找到右边起点image[%d][%d]\n",start_row, i); r_found = 1; break; } } if(l_found&&r_found) { return 1; } else { //printf("未找到起点\n"); return 0; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 八邻域正式开始找右边点的函数,左右线一次性找完。 Tip:特别注意,不要拿宏定义名字作为输入参数,否则数据可能无法传递过来 // @参数说明 // break_flag_r 最多需要循环的次数 // (*image)[image_w] 需要进行找点的图像数组,必须是二值图,填入数组名称即可 // *l_stastic 统计左边数据,用来输入初始数组成员的序号和取出循环次数 // *r_stastic 统计右边数据,用来输入初始数组成员的序号和取出循环次数 // l_start_x 左边起点横坐标 // l_start_y 左边起点纵坐标 // r_start_x 右边起点横坐标 // r_start_y 右边起点纵坐标 // hightest 循环结束所得到的最高高度 // @函数返回 无 // @备 注: //example:search_l_r((uint16)USE_num,image,&data_stastics_l, &data_stastics_r,start_point_l[0],start_point_l[1], start_point_r[0], start_point_r[1],&hightest); //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #define USE_num MT9V03X_H*3 //定义找点的数组成员个数按理说300个点能放下,但是有些特殊情况确实难顶,多定义了一点 //存放点的x,y坐标 uint16 points_l[(uint16)USE_num][2] = { { 0 } };//左线 uint16 points_r[(uint16)USE_num][2] = { { 0 } };//右线 uint16 dir_r[(uint16)USE_num] = { 0 };//用来存储右边生长方向 uint16 dir_l[(uint16)USE_num] = { 0 };//用来存储左边生长方向 uint16 data_stastics_l = 0;//统计左边找到点的个数 uint16 data_stastics_r = 0;//统计右边找到点的个数 uint8 hightest = 0;//最高点 void search_l_r(uint16 break_flag, uint8(*image)[MT9V03X_W], uint16 *l_stastic, uint16 *r_stastic, uint8 l_start_x, uint8 l_start_y, uint8 r_start_x, uint8 r_start_y, uint8*hightest) { uint8 i = 0, j = 0; //左边变量 uint8 search_filds_l[8][2] = { { 0 } }; uint8 index_l = 0; uint8 temp_l[8][2] = { { 0 } }; uint8 center_point_l[2] = { 0 }; uint16 l_data_statics;//统计左边 //定义八个邻域 static int8 seeds_l[8][2] = {{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1},{1,0},{1,1},}; //{-1,-1} {0,-1} {+1,-1} //{-1, 0} {+1, 0} //{-1,+1} {0,+1} {+1,+1} //顺时针 //右边变量 uint8 search_filds_r[8][2] = { { 0 } }; uint8 center_point_r[2] = { 0 };//中心坐标点 uint8 index_r = 0;//索引下标 uint8 temp_r[8][2] = { { 0 } }; uint16 r_data_statics;//统计右边 //定义八个邻域 static int8 seeds_r[8][2] = { {0,1},{1,1},{1,0}, {1,-1},{0,-1},{-1,-1}, {-1,0},{-1,1}, }; //{-1,-1} {0,-1} {+1,-1}, //{-1, 0} {+1, 0} //{-1,+1} {0,+1} {+1,+1} //这个是逆时针 l_data_statics = *l_stastic;//统计找到了多少个点,方便后续把点全部画出来 r_data_statics = *r_stastic;//统计找到了多少个点,方便后续把点全部画出来 //第一次更新坐标点 将找到的起点值传进来 center_point_l[0] = l_start_x;//x center_point_l[1] = l_start_y;//y center_point_r[0] = r_start_x;//x center_point_r[1] = r_start_y;//y //开启邻域循环 while (break_flag--) { //左边 for (i = 0; i < 8; i++)//传递8F坐标 { search_filds_l[i][0] = center_point_l[0] + seeds_l[i][0];//x search_filds_l[i][1] = center_point_l[1] + seeds_l[i][1];//y } //中心坐标点填充到已经找到的点内 points_l[l_data_statics][0] = center_point_l[0];//x points_l[l_data_statics][1] = center_point_l[1];//y l_data_statics++;//索引加一 //右边 for (i = 0; i < 8; i++)//传递8F坐标 { search_filds_r[i][0] = center_point_r[0] + seeds_r[i][0];//x search_filds_r[i][1] = center_point_r[1] + seeds_r[i][1];//y } //中心坐标点填充到已经找到的点内 points_r[r_data_statics][0] = center_point_r[0];//x points_r[r_data_statics][1] = center_point_r[1];//y index_l = 0;//先清零,后使用 for (i = 0; i < 8; i++) { temp_l[i][0] = 0;//先清零,后使用 temp_l[i][1] = 0;//先清零,后使用 } //左边判断 for (i = 0; i < 8; i++) { if (image[search_filds_l[i][1]][search_filds_l[i][0]] == 0 && image[search_filds_l[(i + 1) & 7][1]][search_filds_l[(i + 1) & 7][0]] == 255) { temp_l[index_l][0] = search_filds_l[(i)][0]; temp_l[index_l][1] = search_filds_l[(i)][1]; index_l++; dir_l[l_data_statics - 1] = (i);//记录生长方向 } if (index_l) { //更新坐标点 center_point_l[0] = temp_l[0][0];//x center_point_l[1] = temp_l[0][1];//y for (j = 0; j < index_l; j++) { if (center_point_l[1] > temp_l[j][1]) { center_point_l[0] = temp_l[j][0];//x center_point_l[1] = temp_l[j][1];//y } } } } if ((points_r[r_data_statics][0]== points_r[r_data_statics-1][0]&& points_r[r_data_statics][0] == points_r[r_data_statics - 2][0] && points_r[r_data_statics][1] == points_r[r_data_statics - 1][1] && points_r[r_data_statics][1] == points_r[r_data_statics - 2][1]) ||(points_l[l_data_statics-1][0] == points_l[l_data_statics - 2][0] && points_l[l_data_statics-1][0] == points_l[l_data_statics - 3][0] && points_l[l_data_statics-1][1] == points_l[l_data_statics - 2][1] && points_l[l_data_statics-1][1] == points_l[l_data_statics - 3][1])) { //printf("三次进入同一个点,退出\n"); break; } if (my_abs(points_r[r_data_statics][0] - points_l[l_data_statics - 1][0]) < 2 && my_abs(points_r[r_data_statics][1] - points_l[l_data_statics - 1][1] < 2)) { //printf("\n左右相遇退出\n"); *hightest = (points_r[r_data_statics][1] + points_l[l_data_statics - 1][1]) >> 1;//取出最高点 //printf("\n在y=%d处退出\n",*hightest); break; } if ((points_r[r_data_statics][1] < points_l[l_data_statics - 1][1])) { //printf("\n如果左边比右边高了,左边等待右边\n"); continue;//如果左边比右边高了,左边等待右边 } if (dir_l[l_data_statics - 1] == 7 && (points_r[r_data_statics][1] > points_l[l_data_statics - 1][1]))//左边比右边高且已经向下生长了 { //printf("\n左边开始向下了,等待右边,等待中... \n"); center_point_l[0] = points_l[l_data_statics - 1][0];//x center_point_l[1] = points_l[l_data_statics - 1][1];//y l_data_statics--; } r_data_statics++;//索引加一 index_r = 0;//先清零,后使用 for (i = 0; i < 8; i++) { temp_r[i][0] = 0;//先清零,后使用 temp_r[i][1] = 0;//先清零,后使用 } //右边判断 for (i = 0; i < 8; i++) { if (image[search_filds_r[i][1]][search_filds_r[i][0]] == 0 && image[search_filds_r[(i + 1) & 7][1]][search_filds_r[(i + 1) & 7][0]] == 255) { temp_r[index_r][0] = search_filds_r[(i)][0]; temp_r[index_r][1] = search_filds_r[(i)][1]; index_r++;//索引加一 dir_r[r_data_statics - 1] = (i);//记录生长方向 //printf("dir[%d]:%d\n", r_data_statics - 1, dir_r[r_data_statics - 1]); } if (index_r) { //更新坐标点 center_point_r[0] = temp_r[0][0];//x center_point_r[1] = temp_r[0][1];//y for (j = 0; j < index_r; j++) { if (center_point_r[1] > temp_r[j][1]) { center_point_r[0] = temp_r[j][0];//x center_point_r[1] = temp_r[j][1];//y } } } } } //取出循环次数 *l_stastic = l_data_statics; *r_stastic = r_data_statics; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 从八邻域边界里提取需要的左边线 // @参数说明 total_L :找到的点的总数 // @函数返回 左边线数组l_border //------------------------------------------------------------------------------------------------------------------ uint16 border_to_edge_l[MT9V03X_H];//存放左边border和edge的映射关系的数组 void get_left(uint16 total_L) { uint8 i = 0; uint16 j = 0; uint8 h = 0; //初始化 for (i = 0;i<MT9V03X_H;i++) { l_border[i] = border_min; } h = MT9V03X_H - 2; //左边 for (j = 0; j < total_L; j++) { //printf("%d\n", j); if (points_l[j][1] == h) { l_border[h] = points_l[j][0]+1; border_to_edge_l[h] = j; } else continue; //每行只取一个点,没到下一行就不记录 h--; if (h == 0) { break;//到最后一行退出 } } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 从八邻域边界里提取需要的右边线 // @参数说明 total_R :找到的点的总数 // @函数返回 右边线数组r_border //------------------------------------------------------------------------------------------------------------------ uint16 border_to_edge_r[MT9V03X_H];//存放右边border和edge的映射关系的数组 void get_right(uint16 total_R) { uint8 i = 0; uint16 j = 0; uint8 h = 0; for (i = 0; i < MT9V03X_H; i++) { r_border[i] = border_max;//右边线初始化放到最右边,左边线放到最左边,这样八邻域闭合区域外的中线就会在中间,不会干扰得到的数据 } h = MT9V03X_H - 2; //右边 for (j = 0; j < total_R; j++) { if (points_r[j][1] == h) { r_border[h] = points_r[j][0] - 1; border_to_edge_r[h] = j; } else continue;//每行只取一个点,没到下一行就不记录 h--; if (h == 0)break;//到最后一行退出 } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 滤波减少噪声 // @函数返回 经过滤波的图像数组bin_image //------------------------------------------------------------------------------------------------------------------ #define threshold_max 255*5//定义膨胀的阈值区间 #define threshold_min 255*2//定义腐蚀的阈值区间 void image_filter(uint8(*bin_image)[MT9V03X_W])//形态学滤波,膨胀和腐蚀 { uint16 i, j; uint32 num = 0; for (i = 1; i < MT9V03X_H - 1; i++) { for (j = 1; j < (MT9V03X_W - 1); j++) { //统计八个方向的像素值 num = bin_image[i - 1][j - 1] + bin_image[i - 1][j] + bin_image[i - 1][j + 1] + bin_image[i][j - 1] + bin_image[i][j + 1] + bin_image[i + 1][j - 1] + bin_image[i + 1][j] + bin_image[i + 1][j + 1]; if (num >= threshold_max && bin_image[i][j] == 0) { bin_image[i][j] = 255;//白 } if (num <= threshold_min && bin_image[i][j] == 255) { bin_image[i][j] = 0;//黑 } } } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 给图像画一个黑框 // @函数返回 带有黑框的图像数组bin_image //------------------------------------------------------------------------------------------------------------------ void image_draw_rectan(uint8(*image)[MT9V03X_W]) { uint8 i = 0; for (i = 0; i < MT9V03X_H; i++) { image[i][0] = 0; image[i][1] = 0; image[i][MT9V03X_W - 1] = 0; image[i][MT9V03X_W - 2] = 0; } for (i = 0; i < MT9V03X_W; i++) { image[0][i] = 0; image[1][i] = 0; //image[image_h-1][i] = 0; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 环岛元素识别处理 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //全局状态变量 IslandState current_state = NORMAL; uint8_t island_type = 0; // 0:未确定 1:左环岛 2:右环岛 uint8 target_h = 0;//存放断裂点行数 uint16 A_edge = 0; uint16 V_edge = 0; uint8 A_point = 0; uint8 P_point = 0; uint8 V_point = 0; //------------------------------------------------------------------------------------------------------------------ // @函数功能 边界连续性判断 // @参数说明 需要寻找的边线 // @函数返回 有断裂返回0,无断裂返回1 //------------------------------------------------------------------------------------------------------------------ uint8 border_continuous(uint8 *border) { for(uint8 i = MT9V03X_H-1;i > 0;i--) { int8 diff = border[i] - border[i - 1]; if(diff < -4 || diff > 4) { target_h = i; return 0;//有断裂 } } return 1;//无断裂 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找A点 // @函数返回 A点 //------------------------------------------------------------------------------------------------------------------ //左圆环时寻找左边界A点 uint8 find_point_A_l(void) { uint16 j = border_to_edge_l[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_l - 2) { search_max = data_stastics_l - 2; } //遍历寻找A点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][0] data_stastics_r - 2) { search_max = data_stastics_r - 2; } //遍历寻找A点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][0]>points_l[j][0] && points_l[j+2][1] 1;i++) { if(l_border[i-2] < l_border[i] && l_border[i+2] < l_border[i]) { P_point = i; return 1;//找到P点 } } return 0;//未找到P点 } //右圆环时寻找左边界P点 uint8 find_point_P_r(void) { for(uint8 i = MT9V03X_H - 2;i > 1;i++) { if(l_border[i-2] > l_border[i] && l_border[i+2] > l_border[i]) { P_point = i; return 1;//找到P点 } } return 0;//未找到P点 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找V点 // @函数返回 V点 //------------------------------------------------------------------------------------------------------------------ //左边V点 uint8 find_point_V_l(void) { uint16 j = border_to_edge_l[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_l - 2) { search_max = data_stastics_l - 2; } //遍历寻找V点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][1] data_stastics_r - 2) { search_max = data_stastics_r - 2; } //遍历寻找V点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][1] end_point;h--) { border[h] = (uint8)(border[m] + (m - h) / k); } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 总环岛识别处理函数 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- void island_handler(void) { switch(current_state) { case NORMAL: //判断初见环岛条件 if(border_continuous(r_border) && !border_continuous(l_border) && find_point_A_l() && find_point_P_l())//判断是否为左环岛 { current_state = SEE_ISLAND; island_type = 1;//左环岛 } if(!border_continuous(r_border) && border_continuous(l_border) && find_point_A_r() && find_point_P_r())//判断是否为右环岛 { current_state = SEE_ISLAND; island_type = 2;//右环岛 } break; case SEE_ISLAND://初见环岛 if(island_type == 1)//左环岛 { //找A,P点 border_continuous(l_border); find_point_A_l(); find_point_P_l(); //补线 A_point = points_l[A_edge][1]; l_border[A_point] = points_l[A_edge][0]; patching_line(A_point,P_point,l_border,P_point); //判断初入环岛条件 if(l_border[MT9V03X_H-1] == border_min && l_border[MT9V03X_H-2] == border_min) { current_state = ENTER_ISLAND; } } if(island_type == 2)//右环岛 { //找A,P点 border_continuous(r_border); find_point_A_r(); find_point_P_r(); //补线 A_point = points_r[A_edge][1]; r_border[A_point] = points_r[A_edge][0]; patching_line(A_point,P_point,r_border,P_point); //判断初入环岛条件 if(r_border[MT9V03X_H-1] == border_max && r_border[MT9V03X_H-2] == border_max) { current_state = ENTER_ISLAND; } } break; case ENTER_ISLAND://初入环岛 if(island_type == 1)//左环岛 { //找P点 find_point_P_l(); //补线 A_point = MT9V03X_H-1; patching_line(A_point,P_point,l_border,P_point); //判断第一次到环岛出口条件 if(!border_continuous(l_border) && border_continuous(r_border) && find_point_V_l()) { current_state = EXIT_ISLAND1; } } if(island_type == 2)//右环岛 { //找P点 find_point_P_r(); //补线 A_point = MT9V03X_H-1; patching_line(A_point,P_point,r_border,P_point); //判断第一次到环岛出口条件 if(border_continuous(l_border) && !border_continuous(r_border) && find_point_V_r()) { current_state = EXIT_ISLAND1; } } break; case EXIT_ISLAND1://第一次到环岛出口 if(island_type == 1)//左环岛 { //找V点 border_continuous(l_border); find_point_V_l(); //补线 V_point = points_l[V_edge][1]; r_border[V_point] = points_l[A_edge][0]; patching_line(119,V_point,r_border,0); //判断即将入环条件 if(!border_continuous(r_border) && find_point_V_r()) { current_state = IN_ISLAND; } } if(island_type == 2)//右环岛 { //找V点 border_continuous(r_border); find_point_V_r(); //补线 V_point = points_r[V_edge][1]; l_border[V_point] = points_r[A_edge][0]; patching_line(119,V_point,l_border,0); //判断即将入环条件 if(!border_continuous(l_border) && find_point_V_l()) { current_state = IN_ISLAND; } } break; case PRE_ENTER://即将入环 if(island_type == 1)//左环岛 { //找V点 border_continuous(r_border); find_point_V_r(); //补线 V_point = points_r[V_edge][1]; r_border[V_point] = points_r[A_edge][0]; patching_line(119,V_point,r_border,0); //判断完全入环条件 if(border_continuous(r_border) && border_continuous(l_border)) { current_state = IN_ISLAND; } } if(island_type == 2)//右环岛 { //找V点 border_continuous(l_border); find_point_V_l(); //补线 V_point = points_l[V_edge][1]; l_border[V_point] = points_l[A_edge][0]; patching_line(119,V_point,l_border,0); //判断完全入环条件 if(border_continuous(r_border) && border_continuous(l_border)) { current_state = IN_ISLAND; } } break; case IN_ISLAND://完全入环 if(island_type == 1)//左环岛 { //条件补线 if(!border_continuous(r_border) && border_continuous(l_border)) { r_border[0] = border_min; patching_line(target_h,0,r_border,0); } //判断第二次到环岛出口条件 if( l_border[MT9V03X_H-1]>border_min && l_border[MT9V03X_H-2]>border_min && r_border[MT9V03X_H-1]==border_max && r_border[MT9V03X_H-1]==border_max) { current_state = EXIT_ISLAND2; } } if(island_type == 2)//右环岛 { //条件补线 if(!border_continuous(l_border) && border_continuous(r_border)) { l_border[0] = border_max; patching_line(target_h,0,l_border,0); } //判断第二次到环岛出口条件 if( l_border[MT9V03X_H-1]==border_min && l_border[MT9V03X_H-2]==border_min && r_border[MT9V03X_H-1]<border_max && r_border[MT9V03X_H-1]<border_max) { current_state = EXIT_ISLAND2; } } break; case EXIT_ISLAND2://第二次到环岛出口 if(island_type == 1)//左环岛 { //判断最终出环条件 if(!border_continuous(l_border) && border_continuous(r_border)) { current_state = FINAL_EXIT; } } if(island_type == 2)//右环岛 { //判断最终出环条件 if(border_continuous(l_border) && !border_continuous(r_border)) { current_state = FINAL_EXIT; } } break; case FINAL_EXIT://最终出环 if(island_type == 1)//左环岛 { //补线 border_continuous(l_border); patching_line(119,target_h,l_border,target_h); //结束条件 if(border_continuous(l_border) && border_continuous(r_border)) { current_state = NORMAL; island_type = 0; } } if(island_type == 2)//右环岛 { //补线 border_continuous(r_border); patching_line(119,target_h,r_border,target_h); //结束条件 if(border_continuous(l_border) && border_continuous(r_border)) { current_state = NORMAL; island_type = 0; } } break; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 获取车身偏差 // @函数返回 车身偏差error //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- int16 error = 1000; //误差100 int16 error_last = 0; //上次误差 void car_error(void) { uint8 i = 0; int32 num = 0; //int16 num = 0 for(i = 1;i < MT9V03X_H;i++) { num += (center_line[i] - (MT9V03X_W / 2)); } error_last = error; error = num; } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 最终处理函数 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- uint8 change = 0; uint8 change_last = 0; void image_process(void) { uint16 i; uint8 hightest = 0;//定义一个最高行,tip:这里的最高指的是y值的最小 Get_image(mt9v03x_image);//获得一副灰度图像 turn_to_bin();//大津法二值化。 //提取赛道边界 image_filter(bin_image);//滤波减少噪声 image_draw_rectan(bin_image);//给图像画黑框为八领域做准备 //清零 data_stastics_l = 0; data_stastics_r = 0; if (get_start_point(MT9V03X_H - 2))//找到起点了,再执行八领域,没找到就一直找 { navigation_flag = 0; //判断直角弯 uint8 m = 0,n = 0, j = 0; for(j = 1;j < MT9V03X_W;j++) { if(bin_image[60][j] == 255) { break; } if(bin_image[62][j] == 255) { break; } } if(j == MT9V03X_W) { for(j = 119;j > 55;j--) { if(bin_image[j][5] == 255 && bin_image[j][7] == 255) { m = 1; } if(bin_image[j][115] == 255 && bin_image[j][113] == 255) { n = 1; } } } if(m == 1 && n == 0) { navigation_flag = 1; } if(m == 0 && n == 1) { navigation_flag = 2; } //八领域处理 search_l_r((uint16)USE_num, bin_image, &data_stastics_l, &data_stastics_r, start_point_l[0], start_point_l[1], start_point_r[0], start_point_r[1], &hightest); // 从爬取的边界线内提取边线 , 这个才是最终有用的边线 get_left(data_stastics_l); get_right(data_stastics_r); //处理函数 island_handler();//环岛元素识别处理 } else { navigation_flag = 3; } for (i = hightest; i < MT9V03X_H-1; i++) { center_line[i] = (l_border[i] + r_border[i]) >> 1;//求中线 } if(bin_image[118][8] == 0 && bin_image[118][40] == 255 && bin_image[118][100] == 255 && bin_image[118][148] == 255 && bin_image[118][180] == 0 && bin_image[118][94] == 255) { change_last = change; change = 1; } else { change = 0; } if(change == 1 && change_last == 0) { stop++; } 以上代码如何调整参数来降低曝光问题

最新推荐

recommend-type

python opencv 批量改变图片的尺寸大小的方法

constant = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=BLACK) # 调整图像大小 return cv2.resize(constant, (height, width)) ``` 3. **遍历目录和读取图片**: `read_...
recommend-type

说出你们的故事—网络沟通-新娘篇.docx

说出你们的故事—网络沟通-新娘篇.docx
recommend-type

网络营销全案框架协议.doc

网络营销全案框架协议.doc
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在
recommend-type

import torch import numpy as np def a2t(): np_data = np.array([[1, 2],[3,4]]) #/********** Begin *********/ #将np_data转为对应的tensor,赋给变量torch_data torch_data = torch.tensor(np_data) #/********** End *********/ return(torch_data)

<think>我们正在处理用户关于PyTorch张量操作和与NumPy数组转换的代码检查请求。根据用户需求,我们需要: 1. 展示如何在PyTorch中将张量转换为NumPy数组,以及反向转换。 2. 提供一些常见的张量操作示例。 3. 对代码进行解释和检查。 注意:由于用户要求生成相关问题,我们将在回答后生成相关问题。 步骤: 1. 导入必要的库(torch和numpy)。 2. 创建示例张量。 3. 展示张量转NumPy数组(注意:共享内存问题,即修改一个可能影响另一个)。 4. 展示NumPy数组转张量(同样注意共享内存问题)。 5. 展示一些基本张量操作(如加减乘除、矩阵乘法、形状
recommend-type

电脑垃圾清理专家:提升系统运行效率

标题“电脑垃圾清理专家(精)”所指的知识点,是对一款以清理电脑垃圾文件为专项功能的软件的描述。在IT领域中,电脑垃圾清理是维护计算机系统性能和安全性的常规操作。这类软件通常被称作系统清理工具或优化工具。 1. **电脑垃圾的定义**:在计算机系统中,垃圾文件通常指那些无用的、过时的、临时的或损坏的文件。这些文件可能包括系统缓存、日志文件、临时文件、无用的程序安装文件、重复文件等。它们会占用磁盘空间,影响系统性能,并可能对系统安全构成潜在威胁。 2. **清理垃圾文件的目的**:清理这些垃圾文件有多重目的。首先,它可以释放被占用的磁盘空间,提升电脑运行速度;其次,它可以帮助系统更高效地运行,避免因为垃圾文件过多导致的系统卡顿和错误;最后,它还有助于维护数据安全,因为一些过时的临时文件可能会包含敏感信息。 3. **电脑垃圾清理方法**:电脑垃圾清理可以手动进行,也可以使用第三方的清理软件来自动执行。手动清理需要用户打开文件资源管理器,检查特定目录(如Windows临时文件夹、回收站、下载文件夹等),并手动删除不需要的文件。这通常较为繁琐,且容易出错。 4. **第三方清理软件的特点**:相较于手动清理,第三方电脑垃圾清理软件可以提供更为方便快捷的清理体验。这类软件通常具备用户友好的界面,能够自动扫描、识别并清除系统垃圾文件,有时还能对注册表、浏览器历史记录等进行清理。此外,一些高级的清理工具还可以提供系统优化、启动项管理、软件卸载和隐私保护等功能。 5. **清理软件的潜在风险**:虽然清理软件能够带来便利,但也存在潜在风险。不当的清理可能会误删重要文件,导致系统不稳定或某些应用程序无法正常工作。因此,使用这类软件需要用户具有一定的计算机知识,能够辨别哪些文件是安全可删除的。 6. **专业清理工具的优势**:标题中的“专家”二字暗示该软件可能具备一些高级功能。专业级的清理工具往往具备更复杂的算法和更广泛的清理范围,它们可以深入分析系统文件,甚至进行深度扫描,找到隐藏较深的无效文件和系统垃圾。它们还可能具备诸如智能判断、快速扫描、安全删除等功能,确保在高效清理的同时不会影响系统的正常运作。 从描述内容来看,该文件只重复了“电脑垃圾清理专家”这一关键词,没有提供其他具体信息。这可能是为了强调软件的功能定位或品牌口号。而从标签“电脑,垃圾,清理,专家”可以提炼出与电脑垃圾清理相关的关键点,如电脑维护、系统性能提升、安全隐私保护等。 在【压缩包子文件的文件名称列表】中,只有一个文件“电脑垃圾清理专家.exe”,这表明了该压缩文件包中仅包含一个可执行文件,即用户下载后可以直接运行的清理工具程序。 总结而言,电脑垃圾清理专家是帮助用户管理和清除电脑系统垃圾,提升电脑性能和安全性的实用软件。专业的清理工具通常能够提供更为全面和安全的清理服务,但用户在使用过程中需要小心谨慎,避免误删除重要文件。