deepsort slowfast项目
时间: 2025-04-22 11:52:42 浏览: 34
### DeepSORT与SlowFast项目实现教程
#### 一、项目概述
该项目旨在通过YOLOv5进行目标检测,利用DeepSORT跟踪对象,并采用SlowFast网络执行动作识别。此组合能够实现实时多目标的动作分类,在视频监控等领域具有广泛应用价值[^4]。
#### 二、环境搭建
为了顺利运行该集成方案,需按照如下指导完成依赖库安装:
对于`SlowFast`部分:
```bash
git clone https://github.com/facebookresearch/SlowFast.git
cd SlowFast
python setup.py build develop
```
上述命令会克隆官方仓库并构建必要的Python包以便后续调用预训练模型进行推理操作[^2]。
#### 三、资源获取
确保已下载指定版本的预训练权重文件如`SLOWFAST_32x2_R101_50_50.pkl`用于初始化神经网络参数,从而加速收敛过程并提高准确性。
#### 四、代码结构解析
整个项目的源码托管于多个平台之上,其中GitHub地址为:[Whiffe/yolov5-slowfast-deepsort-PytorchVideo](https://github.com/Whiffe/yolov5-slowfast-deepsort-PytorchVideo),Gitee镜像位于[YFwinston/yolov5-slowfast-deepsort-PytorchVideo](https://gitee.com/YFwinston/yolov5-slowfast-deepsort-PytorchVideo)[^3]。这些存储库内包含了完整的工程框架以及详细的文档说明帮助开发者快速上手。
#### 五、核心功能介绍
- **目标检测**:选用轻量级且高效的YOLOv5作为基础架构来定位图像中的各个实体;
- **轨迹追踪**:引入了性能优越的DeepSORT算法负责维持同一物体跨帧间的一致性标识;
- **行为分析**:借助Facebook Research开源的SlowFast双路径时空卷积网络捕捉动态变化特征进而判断具体活动类别;
最终实现了每秒处理超过二十四帧的速度表现(测试条件为单张RTX 2080 Ti显卡环境下批量大小设定为三十),显著优于同类解决方案[^5]。
```python
import torch
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
from slowfast.models.build import MODEL_REGISTRY
from slowfast.config.defaults import get_cfg
# 加载YOLOv5模型
weights_path = 'path/to/best.pt'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_yolo = attempt_load(weights_path).to(device)
# 初始化DeepSORT实例
cfg_deepsort = get_config()
cfg_deepsort.merge_from_file("deep_sort/configs/deep_sort.yaml")
deepsort_tracker = DeepSort(cfg_deepsort.DEEPSORT.REID_CKPT,
max_dist=cfg_deepsort.DEEPSORT.MAX_DIST,
min_confidence=cfg_deepsort.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg_deepsort.DEEPSORT.NMS_MAX_OVERLAP,
max_iou_distance=cfg_deepsort.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg_deepsort.DEEPSORT.MAX_AGE,
n_init=cfg_deepsort.DEEPSORT.N_INIT,
nn_budget=cfg_depthsort.DEEPSORT.NN_BUDGET,
use_cuda=True)
# 构建SlowFast模型配置
cfg_slowfast = get_cfg()
cfg_slowfast.merge_from_file("configs/Kinetics/CSN_I3D_8x8_R50.yaml") # 替换成实际使用的配置文件路径
slowfast_model = MODEL_REGISTRY.get("SlowFast")(cfg_slowfast)
checkpoint = torch.load("pretrained/SLOWFAST_32x2_R101_50_50.pkl", map_location=device)['model_state']
slowfast_model.load_state_dict(checkpoint)
slowfast_model.eval().to(device);
```
阅读全文
相关推荐














