stm32cubeMX TIM2_CH2触发adc采样

时间: 2025-02-25 22:06:51 浏览: 118
### 配置TIM2_CH2触发ADC采样 在STM32CubeMX中配置TIM2_CH2触发ADC采样的过程涉及多个设置项,确保定时器能够正确触发ADC并启动转换。以下是详细的配置说明: #### 初始化项目 打开STM32CubeMX软件,创建新工程并选择相应的MCU型号。 #### 设置时钟树 进入“Clock Configuration”,调整PLL和其他参数以满足应用需求,确保系统时钟稳定可靠[^1]。 #### 配置定时器TIM2 转至“Pinout & Configuration”标签页,在外设列表找到`TIM2`,点击右侧齿轮图标进入其详细设定界面: - **Mode**: 设定为 `Output Compare` 或者其他适合模式。 - **Channel 2 (CH2)**: 启用此通道用于生成触发信号。 - **OC Mode Selection for Channel 2**: 可选PWM模式或其他适用选项。 - **Prescaler**: 根据所需频率计算预分频系数。 - **Period/ARR(Auto Reload Register)** 和 **Pulse/C Capture Compare Register(CCR)** : 调整这些寄存器来定义波形周期与占空比。 - **Advanced Control Options** -> **Master Slave Mode(MSM)**: 开启该功能允许TIM2作为主设备控制从属模块如ADC的操作[^2]。 #### ADC配置 同样是在“Pinout & Configuration”页面下查找`ADC`组件: - 将要使用的模拟输入管脚分配给对应的ADC通道。 - 对于触发源的选择,应该指定为由外部事件引起——即来自TIM2 CH2的上升沿或下降沿变化。 ```c /* ADC configuration */ hadc.Instance = ADC1; hadc.Init.ScanConvMode = DISABLE; /* 单次转换 */ hadc.Init.ContinuousConvMode = ENABLE; /* 连续转换模式开启 */ hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING; /* 上升沿和下降沿都可触发 */ hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO; /* 使用TIM2 TRGO作为触发源 */ ``` #### DMA传输 为了高效处理大量数据采集任务,建议启用DMA服务自动将ADC结果搬移到存储区: - 在同一窗口内勾选关联DMA流,并指派合适的请求映射关系; - 编辑回调函数响应DMA完成事件以便及时获取最新测量值[^3]。 #### 中断和服务例程 如果希望进一步优化性能,则可以考虑注册特定类型的ISR(Interrupt Service Routine),比如当一次完整的DMA事务结束后立即通知应用程序层做后续分析工作。 通过上述步骤即可成功建立基于STM32CubeMX平台上的TIM2_CH2驱动ADC工作的框架结构[^4]。
阅读全文

相关推荐

1. GPIO 控制类: OLED:PB8 (SCL)、PB9 (SDA)(I2C 通信,开漏上拉) 红外传感器:PB13(出口检测)、PB12(入口检测),均配置为上拉输入 交通灯:PA11(红灯)、PA12(绿灯) 路灯:PB0(控制输出) 舵机控制:TIM2_CH1 (PA0)、TIM2_CH2 (PA1)(PWM 输出) 二维码扫描模块:USART1 (PA9-TX、PA10-RX),PA8(控制二维码开关) 蓝牙模块:USART2/3(PA2-TX、PA3-RX)) SYN6288语言播报模块:USART3(PB10-TX、PB11-RX)) 2. 模拟输入类(ADC): 光敏传感器:PA4(ADC1 通道 4)。 火焰传感器:PA5(ADC1 通道 5)。 烟雾传感器:PA6(ADC1 通道 6)。 时钟模块(DS1302):PA7(RST)、PB14(SCL)、PB15(SDA)。 3. 外设使用情况(总计 8 个外设) USART:USART1(二维码扫描)、USART2(蓝牙)、USART3(SYN6288 语音)。 ADC:ADC1(3 通道:光敏、烟雾、火焰传感器)。 TIM:TIM2(PWM 控制舵机)、TIM3/TIM4(定时中断,用于系统时钟和传感器轮询)。 DMA1:用于 ADC 数据传输,与串口实时通信。 I2C:OLED 显示(通过 GPIO 模拟 I2C)。 GPIO:普通输入输出(传感器、灯光控制)。 RTC(外部):DS1302 时钟模块(通过 GPIO 模拟通信)。 4. 定时器使用情况(总计 3 个定时器) TIM2:PWM 输出,控制舵机(通道 1 和 2)。 TIM3:用于高精度实时采集火灾与危险气体数据(实现纳秒级采集高危)。 TIM4:定时中断(100ms 周期),用于传感器数据处理、路灯控制、时钟更新等。

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "tim.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define TRIG_PULSE_WIDTH 10 // 10us触发脉冲 #define MEASURE_TIMEOUT 30 // 30ms测量超时 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ volatile uint32_t icVal1 = 0, icVal2 = 0; volatile uint8_t isFirstCaptured = 0; volatile float distance_cm = 0; int Turn_Pwm = 0; uint8_t stop_flag = 0; // 停止标志位 uint8_t void_flag = 0; // 停止标志位 float feature_time = 0; // 特征区域经过时间 int baoguang_count=10; float dis = 0; // 存放测距距离 int main_count=5; /* USER CODE BEGIN PV */ typedef enum { US_IDLE, US_TRIGGER_START, US_WAIT_ECHO } US_State_t; volatile US_State_t us_state = US_IDLE; volatile uint32_t us_trigger_time = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void trigger_ultrasonic_non_blocking() { if (us_state == US_IDLE) { HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4); // 启动TIM2 PWM触发脉冲 us_state = US_WAIT_ECHO; us_trigger_time = HAL_GetTick(); }} void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim); float calibration(float raw_cm); float median_filter(float new_val); void trigger_ultrasonic(); void delay_us(uint16_t us); void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim); /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_TIM3_Init(); MX_TIM4_Init(); MX_TIM1_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_4); HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4); // 启动TIM2 PWM HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_1); // 启动TIM1输入捕获中断 // HAL_Delay(3000); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if (us_state == US_WAIT_ECHO) { // 超时检测(30ms未收到回波) if (HAL_GetTick() - us_trigger_time > MEASURE_TIMEOUT) { us_state = US_IDLE; } } static uint32_t last_measure = 0; if (HAL_GetTick() - last_measure >= 100 && us_state == US_IDLE) { trigger_ultrasonic_non_blocking(); last_measure = HAL_GetTick(); } /* 距离数据处理 --------------------------------------- */ static float filtered_distance = 0; filtered_distance = median_filter(distance_cm); filtered_distance = calibration(filtered_distance); if(filtered_distance < 10.0f) {HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_RESET); } // if (main_count>5){ // // // dis = get_distance(); // if(dis < 20.0) { // 距离小于20cm亮灯 // void_flag = 1;} // main_count=0; // } int pwmVal_R = 200; int pwmVal_L = 200; RD_TSL(baoguang_count); Find_CCD_Zhongzhi(); // 计算特征区域经过时间(假设采样频率为100Hz) if (main_count>5){ feature_time = ccd_data_process(ADV, 50.0f); // 检查是否达到积分阈值 if (feature_time >= INTEGRATION_THRESHOLD) { stop_flag = 1; }} if (main_count>50000){ main_count=50000; } if (!stop_flag) { Turn_Pwm = turn(CCD_Zhongzhi, 0); // 右侧电机控制 if (pwmVal_R - Turn_Pwm > 0) { HAL_GPIO_WritePin(GPIOA, R1_Pin, 1); HAL_GPIO_WritePin(GPIOA, R2_Pin, 0); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, pwmVal_R - Turn_Pwm); } else if (pwmVal_R - Turn_Pwm < 0) { HAL_GPIO_WritePin(GPIOA, R1_Pin, 0); HAL_GPIO_WritePin(GPIOA, R2_Pin, 1); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, -pwmVal_R + Turn_Pwm); } else { HAL_GPIO_WritePin(GPIOA, R1_Pin, 0); HAL_GPIO_WritePin(GPIOA, R2_Pin, 0); } // 左侧电机控制 if (pwmVal_L + Turn_Pwm > 0) { HAL_GPIO_WritePin(GPIOA, L1_Pin, 1); HAL_GPIO_WritePin(GPIOA, L2_Pin, 0); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4, pwmVal_L + Turn_Pwm); } else if (pwmVal_L + Turn_Pwm < 0) { HAL_GPIO_WritePin(GPIOA, L1_Pin, 0); HAL_GPIO_WritePin(GPIOA, L2_Pin, 1); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4, -pwmVal_L - Turn_Pwm); } else { HAL_GPIO_WritePin(GPIOA, L1_Pin, 0); HAL_GPIO_WritePin(GPIOA, L2_Pin, 0); } } else if(void_flag==1){ HAL_GPIO_WritePin(GPIOA, R1_Pin, 1); HAL_GPIO_WritePin(GPIOA, R2_Pin, 0); HAL_GPIO_WritePin(GPIOA, L1_Pin, 1); HAL_GPIO_WritePin(GPIOA, L2_Pin, 0); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4, 350); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2,100);//右边 HAL_Delay(300); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, 350);//右边 __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4,100); HAL_Delay(300); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, 220);//右边 __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4,200); HAL_Delay(100); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, 350);//右边 __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4,100); HAL_Delay(300); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4, 350); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2,100);//右边 HAL_Delay(290); stop_flag = 0; // __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, -pwmVal_R); // __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4, pwmVal_L); } else { static uint8_t is_first_run = 1; // 首次运行标志 if (is_first_run) { HAL_GPIO_WritePin(GPIOA, R1_Pin, 1); HAL_GPIO_WritePin(GPIOA, R2_Pin, 0); HAL_GPIO_WritePin(GPIOA, L1_Pin, 1); HAL_GPIO_WritePin(GPIOA, L2_Pin, 0); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, 210);//右边 __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4,200); HAL_GPIO_WritePin(LED_GPIO_Port,LED_Pin,GPIO_PIN_RESET); HAL_Delay(400); is_first_run = 0; // 清除首次标志 } // 停止小车 HAL_GPIO_WritePin(GPIOA, R1_Pin, 1); HAL_GPIO_WritePin(GPIOA, R2_Pin, 1); HAL_GPIO_WritePin(GPIOA, L1_Pin, 1); HAL_GPIO_WritePin(GPIOA, L2_Pin, 1); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_4, 0); __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, 0); } Dly_us(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM1 && htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) { if (us_state == US_WAIT_ECHO) { // 仅处理等待回波状态 if (!isFirstCaptured) { icVal1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); isFirstCaptured = 1; __HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_FALLING); } else { icVal2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); uint32_t diff = (icVal2 > icVal1) ? (icVal2 - icVal1) : (0xFFFF - icVal1 + icVal2); distance_cm = diff * 0.034f / 2; isFirstCaptured = 0; __HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING); us_state = US_IDLE; // 测量完成,回到空闲状态 } } } } /* 精准延时函数 */ void delay_us(uint16_t us) { __HAL_TIM_SET_COUNTER(&htim4, 0); while (__HAL_TIM_GET_COUNTER(&htim4) < us); } /* 中值滤波函数 */ #define FILTER_SIZE 5 float median_filter(float new_val) { static float buffer[FILTER_SIZE] = {0}; static uint8_t index = 0; float temp[FILTER_SIZE]; buffer[index] = new_val; index = (index + 1) % FILTER_SIZE; memcpy(temp, buffer, sizeof(temp)); // 冒泡排序 for(int i=0; i<FILTER_SIZE-1; i++){ for(int j=0; j<FILTER_SIZE-i-1; j++){ if(temp[j] > temp[j+1]){ float swap = temp[j]; temp[j] = temp[j+1]; temp[j+1] = swap; } } } return temp[FILTER_SIZE/2]; } /* 校准函数 */ float calibration(float raw_cm) { // 校准点配置(根据实测数据修改) const float calib_table[2][2] = {{15.0, 15.3}, {50.0, 49.7}}; if(raw_cm <= calib_table[0][0]) return raw_cm + (calib_table[0][1] - calib_table[0][0]); if(raw_cm >= calib_table[1][0]) return raw_cm + (calib_table[1][1] - calib_table[1][0]); float k = (calib_table[1][1]-calib_table[0][1]) / (calib_table[1][0]-calib_table[0][0]); return k * (raw_cm - calib_table[0][0]) + calib_table[0][1]; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file tim.c * @brief This file provides code for the configuration * of the TIM instances. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "tim.h" /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim4; /* TIM1 init function */ void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_IC_InitTypeDef sConfigIC = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 39; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 65535; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_IC_Init(&htim1) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING; sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI; sConfigIC.ICPrescaler = TIM_ICPSC_DIV1; sConfigIC.ICFilter = 0; if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /* TIM2 init function */ void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 19; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 9; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 10; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ HAL_TIM_MspPostInit(&htim2); } /* TIM3 init function */ void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 499; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /* TIM4 init function */ void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 19; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 65535; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ /* USER CODE END TIM4_Init 2 */ } void HAL_TIM_IC_MspInit(TIM_HandleTypeDef* tim_icHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(tim_icHandle->Instance==TIM1) { /* USER CODE BEGIN TIM1_MspInit 0 */ /* USER CODE END TIM1_MspInit 0 */ /* TIM1 clock enable */ __HAL_RCC_TIM1_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**TIM1 GPIO Configuration PA8 ------> TIM1_CH1 */ GPIO_InitStruct.Pin = ECHO_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(ECHO_GPIO_Port, &GPIO_InitStruct); /* TIM1 interrupt Init */ HAL_NVIC_SetPriority(TIM1_CC_IRQn, 3, 0); HAL_NVIC_EnableIRQ(TIM1_CC_IRQn); /* USER CODE BEGIN TIM1_MspInit 1 */ /* USER CODE END TIM1_MspInit 1 */ } } void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle) { if(tim_baseHandle->Instance==TIM2) { /* USER CODE BEGIN TIM2_MspInit 0 */ /* USER CODE END TIM2_MspInit 0 */ /* TIM2 clock enable */ __HAL_RCC_TIM2_CLK_ENABLE(); /* TIM2 interrupt Init */ HAL_NVIC_SetPriority(TIM2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); /* USER CODE BEGIN TIM2_MspInit 1 */ /* USER CODE END TIM2_MspInit 1 */ } else if(tim_baseHandle->Instance==TIM3) { /* USER CODE BEGIN TIM3_MspInit 0 */ /* USER CODE END TIM3_MspInit 0 */ /* TIM3 clock enable */ __HAL_RCC_TIM3_CLK_ENABLE(); /* USER CODE BEGIN TIM3_MspInit 1 */ /* USER CODE END TIM3_MspInit 1 */ } else if(tim_baseHandle->Instance==TIM4) { /* USER CODE BEGIN TIM4_MspInit 0 */ /* USER CODE END TIM4_MspInit 0 */ /* TIM4 clock enable */ __HAL_RCC_TIM4_CLK_ENABLE(); /* TIM4 interrupt Init */ HAL_NVIC_SetPriority(TIM4_IRQn, 0, 0); HAL_NVIC_EnableIRQ(TIM4_IRQn); /* USER CODE BEGIN TIM4_MspInit 1 */ /* USER CODE END TIM4_MspInit 1 */ } } void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(timHandle->Instance==TIM2) { /* USER CODE BEGIN TIM2_MspPostInit 0 */ /* USER CODE END TIM2_MspPostInit 0 */ __HAL_RCC_GPIOA_CLK_ENABLE(); /**TIM2 GPIO Configuration PA3 ------> TIM2_CH4 */ GPIO_InitStruct.Pin = TRIG_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(TRIG_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN TIM2_MspPostInit 1 */ /* USER CODE END TIM2_MspPostInit 1 */ } else if(timHandle->Instance==TIM3) { /* USER CODE BEGIN TIM3_MspPostInit 0 */ /* USER CODE END TIM3_MspPostInit 0 */ __HAL_RCC_GPIOB_CLK_ENABLE(); /**TIM3 GPIO Configuration PB1 ------> TIM3_CH4 PB5 ------> TIM3_CH2 */ GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); __HAL_AFIO_REMAP_TIM3_PARTIAL(); /* USER CODE BEGIN TIM3_MspPostInit 1 */ /* USER CODE END TIM3_MspPostInit 1 */ } } void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef* tim_icHandle) { if(tim_icHandle->Instance==TIM1) { /* USER CODE BEGIN TIM1_MspDeInit 0 */ /* USER CODE END TIM1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_TIM1_CLK_DISABLE(); /**TIM1 GPIO Configuration PA8 ------> TIM1_CH1 */ HAL_GPIO_DeInit(ECHO_GPIO_Port, ECHO_Pin); /* TIM1 interrupt Deinit */ HAL_NVIC_DisableIRQ(TIM1_CC_IRQn); /* USER CODE BEGIN TIM1_MspDeInit 1 */ /* USER CODE END TIM1_MspDeInit 1 */ } } void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle) { if(tim_baseHandle->Instance==TIM2) { /* USER CODE BEGIN TIM2_MspDeInit 0 */ /* USER CODE END TIM2_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_TIM2_CLK_DISABLE(); /* TIM2 interrupt Deinit */ HAL_NVIC_DisableIRQ(TIM2_IRQn); /* USER CODE BEGIN TIM2_MspDeInit 1 */ /* USER CODE END TIM2_MspDeInit 1 */ } else if(tim_baseHandle->Instance==TIM3) { /* USER CODE BEGIN TIM3_MspDeInit 0 */ /* USER CODE END TIM3_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_TIM3_CLK_DISABLE(); /* USER CODE BEGIN TIM3_MspDeInit 1 */ /* USER CODE END TIM3_MspDeInit 1 */ } else if(tim_baseHandle->Instance==TIM4) { /* USER CODE BEGIN TIM4_MspDeInit 0 */ /* USER CODE END TIM4_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_TIM4_CLK_DISABLE(); /* TIM4 interrupt Deinit */ HAL_NVIC_DisableIRQ(TIM4_IRQn); /* USER CODE BEGIN TIM4_MspDeInit 1 */ /* USER CODE END TIM4_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ 有什么问题吗

完成一个仓储环境监测的模拟系统。具体要求如下: 1. DHT11模块完成温湿度测量,5s更新,数值显示于数码管,同时打印到串口。温度超过阈值触发蜂鸣器短鸣,同时启动风扇小马达; 2. LDR模块完成环境照度测量,4s更新,数值显示于数码管,同时打印到串口。照度超过阈值启动PWM调光(高、中、低三级调光)。 3. 按键循环切换显示模式,按第1下固定显示温度,按第二下固定显示照度,按第三下恢复默认的自动显示模式。按键用外部中断实现 int main(void) { systick_init(72); led_init(); usart1_init(115200); display_init(); tim4_init(1000,72); // 1ms的定时间隔 TIM3_CH2_PWM_Init(500-1,72-1); dht11_init(); ldr_init(); //key_init(); while(1) { // 轮询DHT11的状态 if(dht11.state == WORK) { if(dht11.getData(&dht11.temp, &dht11.humi) == SUCCESS) // DHT11温湿度数据更新 { printf("temperature:%d℃ humidity(RH):%d \r\n", dht11.temp, dht11.humi); dsp.interface = TEMP; dht11.onTempChange(dht11.temp_threshold); // 温度超过阈值的处理 } dht11.state = STANDBY; } // 轮询LDR的状态 if(ldr.state == WORK) { ldr.light = ldr.getData(); printf("light intensity:%d \r\n", ldr.light); dsp.interface = LIGHT; ldr.onLightChange(ldr.high_threshold,ldr.low_threshold); // 照度超过阈值的处理 ldr.state = STANDBY; } // 轮询数码管界面状态 switch(dsp.interface) { case LIGHT: setLightValue(&dsp,1); break; case TEMP: setTempValue(&dsp,1); break; case HUMI: setHumiValue(&dsp,1); break; default: break; } } }#include "systick.h" static u8 fac_us=0; //us延时倍乘数 static u16 fac_ms=0; //ms延时倍乘数 //初始化延迟函数 //SYSTICK的时钟固定为AHB时钟的1/8 //SYSCLK:系统时钟频率 void systick_init(u8 SYSCLK) { SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); fac_us = SYSCLK/8; fac_ms = (u16)fac_us * 1000; } //延时nus //nus为要延时的us数. void delay_us(u32 nus) { u32 temp; SysTick->LOAD=nus*fac_us; //时间加载 SysTick->VAL=0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD = (u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit) SysTick->VAL = 0x00; //清空计数器 SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; } while((temp&0x01) && !(temp&(1<<16))); //等待时间到达 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL = 0x00; //清空计数器 } #include "display.h" DisplayStruct dsp; void segDisplay(void); // 共阴极数码管,阴极位选(0有效),阳极段选(1有效) const u16 segCode[11] = { /* 0 1 2 3 4 5 6 7 */ 0x003F, 0x0006, 0x005B, 0x004F, 0x0066, 0x006D, 0x007D, 0x0007, /* 8 9 off */ 0x007F, 0x006F, 0x0000 }; /******************************************************************************* * @brief 初始化数码管用到的GPIO端口和dsp结构体 * @param None * @retval None *******************************************************************************/ void display_init(void) { GPIO_InitTypeDef GPIO_InitStructure = {0}; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB, ENABLE); // PA0~PA7: 段选(分别连接引脚A~G); // PB12~PB15:位选(分别连接引脚D1~D4) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); dsp.currDigit = 1; // dsp结构体的初始化 dsp.SegDisplay = segDisplay; } /*********************************************************************************** * @brief 设置数码管要显示的4位数值。 * @param dsp:数码管结构体指针;value[4]:4位数值;dotBit:小数点位置(没有小数点则置0) * @retval None ***********************************************************************************/ void setValue(DisplayStruct *dsp, u8 value[4], u8 dotBit) { dsp->digit[0] = value[0]; dsp->digit[1] = value[1]; dsp->digit[2] = value[2]; dsp->digit[3] = value[3]; dsp->dotDigit = dotBit; } void setLightValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 1; // 参数编号 dsp->digit[1] = 10; // 第二位空缺 dsp->digit[2] = ldr.light/10; dsp->digit[3] = ldr.light%10; // dsp->dotDigit = dotBit; // 小数点位置 } void setTempValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 2; dsp->digit[1] = 10; dsp->digit[2] = dht11.temp/10; dsp->digit[3] = dht11.temp%10; dsp->dotDigit = dotBit; } void setHumiValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 3; dsp->digit[1] = 10; dsp->digit[2] = dht11.humi/10; dsp->digit[3] = dht11.humi%10; dsp->dotDigit = dotBit; } /******************************************************************************* * @简 介 段选,让某一位数码管显示指定的数字 * @输入参数 value:段码数组的序号(0~9),代表要显示的数字 * @retval * 备注:只操作PA的低8位,不要影响高8位。 ********************************************************************************/ void seg(uint8_t value) { if(value < sizeof(segCode)) // 避免数组溢出 { GPIOA->ODR &= 0xFF00; GPIOA->ODR |= segCode[value]; } } /******************************************************************************** * 简 介 位选,一次只能选一位。 * 输入参数 com:位数(取值1~4,从左到右) * 返回值 无 * 备注:只操作PB的高4位(置0),不要影响其他位。 ********************************************************************************/ void com(uint8_t currDigit) { // 数码管位选(0有效) GPIOB->ODR |= 0xF000; GPIOB->ODR &= ~(0x1000<<(currDigit-1)); } /******************************************************************************** * 简介 在数码管上逐位显示其段码(由Timer中断服务函数调用) * 参数 无 * 返回值 无 ********************************************************************************/ void segDisplay(void) { seg(10); // 消隐之前的显示内容 com(dsp.currDigit); // 位选,从COM1到COM4逐次移位,实现动态显示 if(dsp.currDigit != dsp.dotDigit) // 当前位不显示小数点 seg(dsp.digit[dsp.currDigit-1]); else // 当前位要显示小数点 { GPIO_Write(GPIOA, segCode[dsp.digit[dsp.currDigit-1]]| 0x0080); //GPIOA->ODR &= 0xFF00; //GPIOA->ODR |= (segCode[dsp.currDigit-1]|0x0080); } if(++dsp.currDigit > DSP_DIGIT) // 从当前位右移到下一位 dsp.currDigit = 1; } #include "usart.h" int fputc(int ch,FILE *p) //函数默认的,在使用printf函数时自动调用 { USART_SendData(USART1,(u8)ch); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); return ch; } //串口1中断服务程序 //注意,读取USARTx->SR能避免莫名其妙的错误 u8 USART1_RX_BUF[USART1_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. //接收状态 //bit15, 接收完成标志 //bit14, 接收到0x0d //bit13~0, 接收到的有效字节数目 u16 USART1_RX_STA=0; //接收状态标记 /******************************************************************************* * 函 数 名 : USART1_Init * 函数功能 : USART1初始化函数 * 输 入 : bound:波特率 * 输 出 : 无 *******************************************************************************/ void usart1_init(u32 baud) { //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); /* 配置GPIO的模式和IO口 */ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9; //串口输出TX:PA9 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA,&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10; //串口输入RX:PA10 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING; //模拟输入 GPIO_Init(GPIOA,&GPIO_InitStructure); //USART1 初始化设置 USART_InitStructure.USART_BaudRate = baud; //波特率设置 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_Cmd(USART1, ENABLE); //使能串口1 USART_ClearFlag(USART1, USART_FLAG_TC); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启相关中断 //Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//串口1中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3;//抢占优先级3 NVIC_InitStructure.NVIC_IRQChannelSubPriority =3; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器、 } /******************************************************************************* * 函 数 名 : USART1_IRQHandler * 函数功能 : USART1中断函数 * 输 入 : 无 * 输 出 : 无 *******************************************************************************/ void USART1_IRQHandler(void) //串口1中断服务程序 { u8 r; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断 { r =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据 if((USART1_RX_STA&0x8000)==0)//接收未完成 { if(USART1_RX_STA&0x4000)//接收到了0x0d { if(r!=0x0a)USART1_RX_STA=0;//接收错误,重新开始 else USART1_RX_STA|=0x8000; //接收完成了 } else //还没收到0X0D { if(r==0x0d)USART1_RX_STA|=0x4000; else { USART1_RX_BUF[USART1_RX_STA&0X3FFF]=r; USART1_RX_STA++; if(USART1_RX_STA>(USART1_REC_LEN-1))USART1_RX_STA=0;//接收数据错误,重新开始接收 } } } } } #include "timer.h" #include "beep.h" volatile uint16_t beep_time; /******************************************************************************* * 函 数 名 : tim4_init * 函数功能 : TIM4初始化函数 * 输 入 : per:重装载值 psc:分频系数 * 输 出 : 无 *******************************************************************************/ void tim4_init(u16 per,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); // 使能TIM4的时钟 // 配置TIM的时基参数 TIM_TimeBaseInitStructure.TIM_Period = per; // 自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler = psc; // 分频系数 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; // 设置向上计数模式 TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStructure); // 设置参数生效 // 配置中断参数 TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE); // 开启定时器的更新中断 TIM_ClearITPendingBit(TIM4,TIM_IT_Update); // 中断标志位清零 // 配置NVIC NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 中断优先级分组(组2) NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; // 定时器4的中断通道(30号通道) NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; // 抢占优先级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; // 响应优先级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 中断通道使能 NVIC_Init(&NVIC_InitStructure); // NVIC设置参数生效 TIM_Cmd(TIM4,ENABLE); // 使能Timer4 } /******************************************************************************* * 函 数 名 : TIM4_IRQHandler * 函数功能 : TIM4中断函数 * 输 入 : 无 * 输 出 : 无 * 备 注 : 定时间隔1ms ** *****************************************************************************/ void TIM4_IRQHandler(void) { static u16 cnt_dht11; static u16 cnt_ldr; // 蜂鸣器时间处理 if(beep_time > 0) { beep_time--; if(beep_time == 0) { BEEP_OFF(); } } if(TIM_GetITStatus(TIM4,TIM_IT_Update)) // 检查更新中断是否产生 { // 处理定时任务 if(++cnt_dht11 == dht11.period) { if(dht11.state == STANDBY) { dht11.state = WORK; // DHT11状态从STANDBY切换到WORK } cnt_dht11 = 0; } if(++cnt_ldr == ldr.period) { if (ldr.state == STANDBY) { ldr.state = WORK; // LDR状态从STANDBY切换到WORK } cnt_ldr = 0; } // 刷新数码管显示 dsp.SegDisplay(); } TIM_ClearITPendingBit(TIM4,TIM_IT_Update); // 手动清除中断标志位 } #include "dht11.h" #include "relay.h" #include "beep.h" Dht11Struct dht11 = {0}; void SET_DHT11_IO_OUT(void); void SET_DHT11_IO_IN(void); void DHT11_RequestData(void); u8 DHT11_RespondRequest(void); u8 DHT11_Read_Data(u8 *temp, u8 *humi); void DHT11_OnTempChange(u8 temp_threshold); // DHT11_PIN初始化 // 返回值: 无 extern void dht11_init() { GPIO_InitTypeDef GPIO_InitStructure; // 数据引脚初始化 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 数据引脚 GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(DHT11_PORT, &GPIO_InitStructure); GPIO_SetBits(DHT11_PORT, DHT11_PIN); // 初始输出状态:高电平 // 结构体初始化 dht11.period = DHT11_PERIOD; dht11.temp_threshold = TEMP_THRESHOLD; dht11.getData = DHT11_Read_Data; // 获取温湿度数据的函数 dht11.onTempChange = DHT11_OnTempChange; // 温度超过阈值的处理函数 // 做一次数据请求测试,检查设备状态 DHT11_RequestData(); if (DHT11_RespondRequest() == SUCCESS) { dht11.state = STANDBY; printf("DHT11 Init OK!\r\n"); } else { dht11.state = FAIL; printf("DHT11 Check Error!\r\n"); } } // 复位DHT11,单片机向DHT11发起数据采集请求 // 时序图的黑线部分 static void DHT11_RequestData() { SET_DHT11_IO_OUT(); // 数据引脚配置为输出模式 DHT11_DQ_OUT = 0; delay_ms(20); // 低电平持续至少18ms DHT11_DQ_OUT = 1; delay_us(30); // 高电平持续20~40us } // DHT11响应单片机的数据请求 // 返回值:SUCCESS or FAILURE static u8 DHT11_RespondRequest() { u8 retry=0; SET_DHT11_IO_IN(); // 数据引脚设为输入模式,接收DHT11的响应 while (DHT11_DQ_IN && retry<100) // 等待输入由高变低 { retry++; if(retry >= 100) return FAILURE; // 等待时间过长,返回异常。 delay_us(1); } retry=0; while (!DHT11_DQ_IN && retry<100) // 低电平持续时间80us { retry++; if(retry >= 100) return FAILURE; // 低电平持续时间过长,返回异常。 delay_us(1); } return SUCCESS; } //DHT11输出模式配置 static void SET_DHT11_IO_OUT() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(DHT11_PORT,&GPIO_InitStructure); } //DHT11输入模式配置 static void SET_DHT11_IO_IN() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输入模式,最小系统板和DHT11之间并未接上拉电阻 GPIO_Init(DHT11_PORT,&GPIO_InitStructure); } //从DHT11读取一位 //返回值:bit 1或0 //注:此函数处并未做高低电平持续时间异常的处理,因DHT11自身有校验和,即便读错1位也不会造成最终数据的错误。 // 严格来讲,除了正常情况下返回“1”或“0”,还应增加异常情况的返回值(比如“2”)。 static u8 DHT11_Read_Bit(void) { u8 retry=0; while(DHT11_DQ_IN && retry<100) // 等待输入电平由高变低(低电平持续50us) { retry++; delay_us(1); } retry=0; while(!DHT11_DQ_IN && retry<100) // 等待输入电平由低变高 { retry++; delay_us(1); } delay_us(40); // 等待40us(高电平持续26~28us表示0,持续70us表示1) if(DHT11_DQ_IN) return 1; // 40us后如果输入仍为高电平,则表示读入1;否则表示读入0。 else return 0; } //从DHT11读取一个字节 //返回值:读到的8位数据 static u8 DHT11_Read_Byte(void) { u8 i,byte; byte = 0; for (i=0;i<8;i++) { byte <<= 1; // 先前读取的数据(不足8位)全部左移一位 byte |= DHT11_Read_Bit(); // 最低位填入新读取的1位 } return byte; } //从DHT11读取一次完整的数据 //temp:温度值(整数,范围:0~50°) //humi:湿度值(整数,范围:20%~90%) //返回值:0,正常; 1,失败 static u8 DHT11_Read_Data(u8 *temp, u8 *humi) { u8 buf[5]; u8 i; DHT11_RequestData(); if(DHT11_RespondRequest() == SUCCESS) { for(i=0;i<5;i++) // 读取5组共40位数据 { buf[i] = DHT11_Read_Byte(); } if((buf[0]+buf[1]+buf[2]+buf[3]) == buf[4]) // 数据校验 { *humi = buf[0]; // 湿度整数部分 *temp = buf[2]; // 温度整数部分 return SUCCESS; } } return FAILURE; } // 采集DHT11数据并打印至串口 void dht11DataCollect() { u8 temp; u8 humi; if (DHT11_Read_Data(&temp, &humi) == SUCCESS) printf("temperature:%d℃ humidity(RH):%d \r\n", temp, humi); // 输出到串口(重定向) else printf("DHT11 data error! \r\n"); } // 温度阈值处理 void DHT11_OnTempChange(u8 temp_threshold) { if (dht11.temp > temp_threshold) { // 启动风扇(继电器低电平触发) Relay_Low(); // 蜂鸣器短鸣(100ms) BEEP_ON(); beep_time = 100; // 100ms } else { // 关闭风扇 Relay_High(); } } #include "ldr.h" LdrStruct ldr; static u8 getLightIntensity(void); static void OnLightChange(u8 hiLight, u8 loLight); /******************************************************************************* * 函 数 名 : adc_init * 函数功能 : ADC外设的初始化 * 输 入 : 无 * 输 出 : 无 *******************************************************************************/ static void adc_init(void) { GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; // 1.打开相关外设的总线时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_ADC1,ENABLE); // 2.信号引脚的参数配置 GPIO_InitStructure.GPIO_Pin=LDR_PIN; // 信号引脚:PB0 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN; // 设置模拟输入模式 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz; // 设置传输速率 GPIO_Init(LDR_PORT,&GPIO_InitStructure); // 3. 输入时钟降频(<14MHz) RCC_ADCCLKConfig(RCC_PCLK2_Div6); // 分频因子6,输入时钟为72M/6=12MHz // 4. 初始化ADC参数 ADC_InitStructure.ADC_Mode=ADC_Mode_Independent; //独立模式 ADC_InitStructure.ADC_ScanConvMode=DISABLE; //单次扫描 ADC_InitStructure.ADC_ContinuousConvMode=DISABLE; //单次转换 ADC_InitStructure.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None; //软件触发 ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right; //数据右对齐 ADC_InitStructure.ADC_NbrOfChannel=1; //只有1个通道 ADC_Init(ADC1,&ADC_InitStructure); // 5. 使能ADC ADC_Cmd(ADC1,ENABLE); // 6. ADC校准 ADC_ResetCalibration(ADC1); //复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); //开启并完成校准 while(ADC_GetCalibrationStatus(ADC1)); } // LDR的设备初始化 extern void ldr_init() { adc_init(); ldr.period = LDR_PERIOD; ldr.high_threshold = HI_THRESHOLD; ldr.low_threshold = LO_THRESHOLD; ldr.getData = getLightIntensity; ldr.onLightChange = OnLightChange; ldr.state = STANDBY; } /******************************************************************************* * 函 数 名 : GET_ADC_Value * 函数功能 : 获取通道ch的转换值,测量times次,取平均值 * 输 入 : ch:通道编号,Rank:规则序列中的第几个转换,取值1~16; times:测量次数 * 输 出 : 通道ch的times次转换结果的平均值 *******************************************************************************/ static u16 Get_ADC_Value(u8 ch, u8 times) //获取ADC1通道ch的转换值 { u8 i; u32 Temp_val=0; ADC_RegularChannelConfig(ADC1,ch,1,ADC_SampleTime_239Cycles5); for(i=0;i<times;i++) { ADC_SoftwareStartConvCmd(ADC1,ENABLE); // 开始转换 while(!ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)); // 等待至单次转换结束 Temp_val += ADC_GetConversionValue(ADC1); delay_ms(10); } return Temp_val/times; } /******************************************************************************* * 函 数 名 : getLightIntensity * 函数功能 : 将ADC转换值解读为光照强度 * 输 入 : 无 * 输 出 : 光照照度值(0~100, 0:照度最低;100:照度最高) *******************************************************************************/ static u8 getLightIntensity(void) //通过ADC1 通道0的值获取亮度值 { u16 value = 0; u8 lightvalue = 0; value = Get_ADC_Value(ADC_Channel_8,20); lightvalue = 100 - (u16)(value/40.95); return lightvalue; } // 添加PWM控制LED功能 static void set_led_brightness(u8 level) { switch(level) { case 0: // 低档 TIM_SetCompare2(TIM3, 125); // 25%占空比 break; case 1: // 中档 TIM_SetCompare2(TIM3, 250); // 50%占空比 break; case 2: // 高档 TIM_SetCompare2(TIM3, 375); // 75%占空比 break; } } /******************************************************************************* * 函 数 名 : OnLightChange * 函数功能 : 照度超过阈值(高阈值和低阈值)的处理措施 * 输 入 : hiLight-高阈值; loLight-低阈值 * 输 出 : 无 *******************************************************************************/ static void OnLightChange(u8 hiLight, u8 loLight) { if (ldr.light > hiLight) { set_led_brightness(0);// 照度过高,降低亮度 } else if (ldr.light < loLight) { set_led_brightness(2); // 照度过低,提升亮度 } else // 正常范围 { set_led_brightness(1); // 中等亮度 } } #include "key.h" #include "pwm.h" /******************************************************************************* * 函 数 名 : TIM3_CH2_PWM_Init * 函数功能 : TIM3通道2 PWM初始化函数 * 输 入 : per:重装载值 * psc:分频系数 * 输 出 : 无 *******************************************************************************/ void TIM3_CH2_PWM_Init(u16 per,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; GPIO_InitTypeDef GPIO_InitStructure; /* 开启时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO,ENABLE); // PB5引脚启用复用模式 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); // 选择TIM3部分重映射 GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,ENABLE); /* PB5作为PWM的输出引脚 */ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_5; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOB,&GPIO_InitStructure); // 初始化TIM3 TIM_TimeBaseInitStructure.TIM_Period=per; //自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //设置向上计数模式 TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure); // 设置TIM3_CH2的PWM模式,使能CH2输出,呈现出PPT展示的PWM波形 // PWM1即mode1,先输出有效电平,再输出无效电平;PWM2即mode2则正好相反。 TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1; // 设置有效电平为低电平(此案例中低电平点亮D2) TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low; TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable; TIM_OC2Init(TIM3,&TIM_OCInitStructure); //输出比较通道2初始化 TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable); //使能TIM3在 CCR2 上的预装载寄存器 TIM_Cmd(TIM3,ENABLE); //使能定时器 } #include "relay.h" void Relay_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Pin=GPIO_Pin_11; GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStruct); //默认输出低电平 } void Relay_High(void) { GPIO_SetBits(GPIOA, GPIO_Pin_11); } void Relay_Low(void) { GPIO_ResetBits(GPIOA, GPIO_Pin_11); } #ifndef _RELAY_H_ #define _RELAY_H_ #include "main.h" #define RELAY_HIGH 1 #define RELAY_LOW 0 void Relay_Init(void); void Relay_High(void); void Relay_Low(void); #endif #ifndef __PWM_H #define __PWM_H #include "main.h" void TIM3_CH2_PWM_Init(u16 per,u16 psc); #endif #ifndef __LDR_H #define __LDR_H #include "main.h" #define LDR_PIN GPIO_Pin_0 #define LDR_PORT GPIOB #define LDR_PERIOD 4000 // ADC转换周期:4000ms #define HI_THRESHOLD 70 // 照度高阈值 #define LO_THRESHOLD 30 // 照度低阈值 typedef struct{ u8 light; // 光照强度(相对强度:0~100) u16 period; // 重复测量周期(s) u8 high_threshold; // 高亮阈值 u8 low_threshold; // 低亮阈值 SensorState state; // 工作状态 u8 (*getData)(void); // 获取光照强度数据 void (*onLightChange)(u8 hiLight, u8 loLight); // 亮度变化的响应操作 } LdrStruct; void ldr_init(void); extern LdrStruct ldr; #endif #ifndef __DHT11_H #define __DHT11_H #include "main.h" #define DHT11_PIN GPIO_Pin_12 #define DHT11_PORT GPIOA #define DHT11_DQ_IN PCin(12) // 输入 #define DHT11_DQ_OUT PCout(12) // 输出 #define SUCCESS 0 #define FAILURE 1 #define DHT11_PERIOD 5000 // 数据采集周期:5000ms #define TEMP_THRESHOLD 28 // 温度阈值(℃) // 定义DHT11结构体 typedef struct{ u8 temp; // 温度值 u8 humi; // 湿度值 u16 period; // 重复测量周期(s) u8 temp_threshold; // 温度阈值 u8 humi_threshold; // 湿度阈值 SensorState state; // 设备状态 u8 (*getData)(u8 *temp, u8 *humi); // 获取温湿度数据 void (*onTempChange)(u8 temp_threshold); // 高温的响应操作 } Dht11Struct; void dht11_init(void); extern Dht11Struct dht11; #endif #ifndef _usart_H #define _usart_H #include "main.h" #define USART1_REC_LEN 200 //定义最大接收字节数 200 extern u8 USART1_RX_BUF[USART1_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 extern u16 USART1_RX_STA; //接收状态标记 void usart1_init(u32 baud); #endif #ifndef __TIM_H #define __TIM_H #include "main.h" //#include "stm32f10x.h" void tim4_init(u16 per,u16 psc); #endif #ifndef __DISPLAY_H #define __DISPLAY_H #include "main.h" #define DSP_DIGIT 4 // 4位数码管 typedef enum{LIGHT, TEMP, HUMI} DSP_Interface; // 数码管界面 typedef struct { u16 digit[DSP_DIGIT]; // 数码管的4位数字 u8 currDigit; // 当前显示位(1~4) u8 dotDigit; // 小数点位置(0~4,0代表不显示小数点) DSP_Interface interface; // 界面显示哪个测量值 void(*SegDisplay)(void); }DisplayStruct; void display_init(void); void segDisplay(void); //void setValue(DisplayStruct *dsp, u8 value[4], u8 dotBit); void setLightValue(DisplayStruct *dsp, u8 dotBit); void setTempValue(DisplayStruct *dsp, u8 dotBit); void setHumiValue(DisplayStruct *dsp, u8 dotBit); extern DisplayStruct dsp; #endif 在已有代码上完善该任务,STM32F103C8t6,用标准库

大家在看

recommend-type

AAA2.5及汉化补丁

Advanced Aircraft Analysis V2.5.1.53 (3A) 在win7 64位上安装测试。有注册机和安装视频。支持winxp和win732位和64位系统。 Darcorp Advanced Aircraft Analysis V2.5.1.53 (AAA) 软件是一款面向于高级用户的飞机设计和仿真分析软件,目前广泛应用于数十个国家的各种机构,已然成为飞机设计、开发、稳定性分析以及飞行控制的工业标准软件。适用于 FAR23、FAR25、UAV无人驾驶飞机与 Military 规范,为全球飞机公司(如波音公司)、政府部门(如 FAA)与学校采用于飞机初步设计、分析、与 3-D 绘图的一套完整软件工具。 Advanced Aircraft Analysis (AAA) 是行业标准的飞机设计,稳定性和控制分析软件。 安装在超过45个国家,AAA所使用的主要航空工程大学,飞机制造商和世界各地的军事组织。 Advanced Aircraft Analysis(AAA)是行业标准的飞机设计 AAA提供了一个功能强大的框架,以支持飞机初步设计迭代和非独特的过程。 AAA计划允许学生和初步设计工程师从早期的大小通过开环和闭环动态稳定性和灵敏度分析的重量,而该机的配置工作在监管和成本的限制。
recommend-type

人脸检测 人脸关键点检测 口罩检测.zip

RetinaFace 实现的同时人脸检测 关键点 口罩检测 1. linux用户打开rcnn/cython/setup.py 121行注释(windows跳过) 2. 进入cython目录 执行python setup.py build_ext --inplace 3. 运行python test.py 注意如果缺少mxnet等类库 自行使用pip安装
recommend-type

commons-collections4-4.1-bin.zip

commonS操作源码及jar包,没有外部依赖,jar包比较全
recommend-type

CENTUM TP 安装授权及windows设置.rar

CENTUM VP系统软件的安装,以及安装前的必要工作。 CENTUM VP 系统软件的构成: CENTUM VP software(系统组态、操作监视功能、其他可选软件包)控制总线驱 动电子文档。 CENTUM VP 系统软件的安装步骤 安装Windows。(如果PC已经安装可以不做) 启动 Windows 对Windows 进行必要设置以便CENTUM VP的运行: 添加网络适配器 安装Ethernet 适配器(已经存在不必安装)。 安装控制总线驱动(已经存在不必安装)。 添加打印机 安装Service Pack。 安装USB操作键盘驱动 使用USB接口操作键盘时安装 安装CENTUM VP 软件。 Windows构成指定。(包括运行CENTUM VP必须的网络、用户名、其他必要信息 等的设置)。 在CENTUM VP的功能已经具备,如果仅仅是用于工程组态,不需要制定“CENTUM” 用户“自动登录HIS”。 以管理员身份对以下内容进行必要设置。 l 计算机名(站名) 计算机名是Windows 网络用于识别每一台计算机的标志。 一个站名是CENTUM VP 系统中,根据控制总线地址确定的唯一名称。 应确保计算机名和站名的一致性。 计算机名(站名)的设定例: HIS0164 (HISddss:“dd”域号;“ss”站号。) l IP 地址 IP 地址是Vnet 或Vnet Open。用于识别每台PC的确定地址。在各网络中每台PC 的地址是唯一的。 例:172.16.1.64(Vnet);192.168.129.193(Vnet Open) Vnet 地址:172.16.dd.ss “dd”域号:01~16 “ss”站号:01~64 Vnet Open 地址:192.168.128+ dd.129+ ss 子网掩码 255.255.0.0 设置Administrator 密码 为PC机管理者设定密码。 l CENTUM VP 帐户和密码 操作监视功能帐户:CENTUM(系统固定)。 该帐户是在系统安装时自动生成的,账户名不能更改。
recommend-type

Cluster Load Balance Algorithm Simulation Based on Repast

Cluster Load Balance Algorithm Simulation Based on Repast

最新推荐

recommend-type

IOS-粉色系PPT模版.ppt

IOS-粉色系PPT模版.ppt
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在
recommend-type

import torch import numpy as np def a2t(): np_data = np.array([[1, 2],[3,4]]) #/********** Begin *********/ #将np_data转为对应的tensor,赋给变量torch_data torch_data = torch.tensor(np_data) #/********** End *********/ return(torch_data)

<think>我们正在处理用户关于PyTorch张量操作和与NumPy数组转换的代码检查请求。根据用户需求,我们需要: 1. 展示如何在PyTorch中将张量转换为NumPy数组,以及反向转换。 2. 提供一些常见的张量操作示例。 3. 对代码进行解释和检查。 注意:由于用户要求生成相关问题,我们将在回答后生成相关问题。 步骤: 1. 导入必要的库(torch和numpy)。 2. 创建示例张量。 3. 展示张量转NumPy数组(注意:共享内存问题,即修改一个可能影响另一个)。 4. 展示NumPy数组转张量(同样注意共享内存问题)。 5. 展示一些基本张量操作(如加减乘除、矩阵乘法、形状
recommend-type

电脑垃圾清理专家:提升系统运行效率

标题“电脑垃圾清理专家(精)”所指的知识点,是对一款以清理电脑垃圾文件为专项功能的软件的描述。在IT领域中,电脑垃圾清理是维护计算机系统性能和安全性的常规操作。这类软件通常被称作系统清理工具或优化工具。 1. **电脑垃圾的定义**:在计算机系统中,垃圾文件通常指那些无用的、过时的、临时的或损坏的文件。这些文件可能包括系统缓存、日志文件、临时文件、无用的程序安装文件、重复文件等。它们会占用磁盘空间,影响系统性能,并可能对系统安全构成潜在威胁。 2. **清理垃圾文件的目的**:清理这些垃圾文件有多重目的。首先,它可以释放被占用的磁盘空间,提升电脑运行速度;其次,它可以帮助系统更高效地运行,避免因为垃圾文件过多导致的系统卡顿和错误;最后,它还有助于维护数据安全,因为一些过时的临时文件可能会包含敏感信息。 3. **电脑垃圾清理方法**:电脑垃圾清理可以手动进行,也可以使用第三方的清理软件来自动执行。手动清理需要用户打开文件资源管理器,检查特定目录(如Windows临时文件夹、回收站、下载文件夹等),并手动删除不需要的文件。这通常较为繁琐,且容易出错。 4. **第三方清理软件的特点**:相较于手动清理,第三方电脑垃圾清理软件可以提供更为方便快捷的清理体验。这类软件通常具备用户友好的界面,能够自动扫描、识别并清除系统垃圾文件,有时还能对注册表、浏览器历史记录等进行清理。此外,一些高级的清理工具还可以提供系统优化、启动项管理、软件卸载和隐私保护等功能。 5. **清理软件的潜在风险**:虽然清理软件能够带来便利,但也存在潜在风险。不当的清理可能会误删重要文件,导致系统不稳定或某些应用程序无法正常工作。因此,使用这类软件需要用户具有一定的计算机知识,能够辨别哪些文件是安全可删除的。 6. **专业清理工具的优势**:标题中的“专家”二字暗示该软件可能具备一些高级功能。专业级的清理工具往往具备更复杂的算法和更广泛的清理范围,它们可以深入分析系统文件,甚至进行深度扫描,找到隐藏较深的无效文件和系统垃圾。它们还可能具备诸如智能判断、快速扫描、安全删除等功能,确保在高效清理的同时不会影响系统的正常运作。 从描述内容来看,该文件只重复了“电脑垃圾清理专家”这一关键词,没有提供其他具体信息。这可能是为了强调软件的功能定位或品牌口号。而从标签“电脑,垃圾,清理,专家”可以提炼出与电脑垃圾清理相关的关键点,如电脑维护、系统性能提升、安全隐私保护等。 在【压缩包子文件的文件名称列表】中,只有一个文件“电脑垃圾清理专家.exe”,这表明了该压缩文件包中仅包含一个可执行文件,即用户下载后可以直接运行的清理工具程序。 总结而言,电脑垃圾清理专家是帮助用户管理和清除电脑系统垃圾,提升电脑性能和安全性的实用软件。专业的清理工具通常能够提供更为全面和安全的清理服务,但用户在使用过程中需要小心谨慎,避免误删除重要文件。
recommend-type

模式识别期末复习必备:掌握87个知识点的速成秘籍

# 1. 模式识别基础概念 模式识别是计算机科学、人工智能和机器学习领域的一个重要分支,它的基本任务是识别数据模式。模式可以是任何事物,例如文字、图像、声音、基因序列等等。模式识别的主要应用包括:图像识别、语音识别、文本分类、数据挖掘等。 模式识别的基本步骤包括:数据预处理、特征提取、分类或回归、结果评估。在这个过程中,我们需要使用一些数学模型和算法来进行数据分析和决策。模式识别的关键在于找到正确的特征和合适的模型,这对
recommend-type

redis集群模式配置

<think>我们正在配置Redis集群模式。根据引用内容,配置Redis集群需要以下步骤: 1. **修改配置文件**:在每个Redis节点的配置文件中启用集群模式,并设置相关参数。 - `cluster-enabled yes`:启用集群模式。 - `cluster-config-file nodes-xxxx.conf`:指定集群配置文件(xxxx通常用端口号区分)。 - `cluster-node-timeout 15000`:设置集群节点超时时间(毫秒)。 - `appendonly yes`:启用AOF持久化(可选,但推荐)。 例如,对于端口637