活动介绍

揭秘STM32时钟系统:时钟源、时钟树与配置全解析

立即解锁
发布时间: 2024-07-01 18:43:01 阅读量: 729 订阅数: 154
![揭秘STM32时钟系统:时钟源、时钟树与配置全解析](https://img-blog.csdnimg.cn/direct/2f355750bd1b42e7820fbad199b5a260.png) # 1. STM32时钟系统概述 STM32微控制器拥有一个强大的时钟系统,可提供灵活且可配置的时钟源和时钟树。时钟系统负责为微控制器提供稳定、准确的时间基准,以执行各种任务。 时钟系统由多个时钟源组成,包括内部振荡器和外部振荡器。内部时钟源提供稳定的时钟信号,而外部时钟源允许使用外部参考时钟。时钟树将时钟信号从时钟源分配到微控制器的不同外设和内部模块。 通过配置时钟系统,可以优化微控制器的性能和功耗。例如,可以选择高频时钟源以提高性能,或者选择低频时钟源以降低功耗。时钟分频器可以用于调整时钟频率,以满足特定外设或模块的要求。 # 2. 时钟源** **2.1 内部时钟源** **2.1.1 内部高速振荡器(HSI)** HSI是STM32内部的一个RC振荡器,其频率范围通常为8 MHz至16 MHz。它不需要外部元件,因此易于使用。但是,HSI的频率精度和稳定性相对较低,在不同的温度和电压条件下会发生漂移。 **代码块:** ```c // 启用HSI RCC->CR |= RCC_CR_HSION; // 等待HSI稳定 while ((RCC->CR & RCC_CR_HSIRDY) == 0); ``` **逻辑分析:** * `RCC->CR |= RCC_CR_HSION;`:设置HSI使能位,启用HSI振荡器。 * `while ((RCC->CR & RCC_CR_HSIRDY) == 0);`:等待HSI就绪标志位置位,表示HSI稳定。 **2.1.2 内部中速振荡器(MSI)** MSI也是一个内部RC振荡器,但其频率范围更广,通常为100 kHz至48 MHz。MSI的频率精度比HSI稍高,但仍受温度和电压的影响。 **代码块:** ```c // 启用MSI RCC->CR |= RCC_CR_MSION; // 等待MSI稳定 while ((RCC->CR & RCC_CR_MSIRDY) == 0); ``` **逻辑分析:** * `RCC->CR |= RCC_CR_MSION;`:设置MSI使能位,启用MSI振荡器。 * `while ((RCC->CR & RCC_CR_MSIRDY) == 0);`:等待MSI就绪标志位置位,表示MSI稳定。 **2.1.3 内部低速振荡器(LSI)** LSI是一个低功耗RC振荡器,其频率通常为32 kHz。它主要用于RTC(实时时钟)和低功耗模式。LSI的频率精度非常低,但其稳定性较高。 **代码块:** ```c // 启用LSI RCC->CSR |= RCC_CSR_LSION; // 等待LSI稳定 while ((RCC->CSR & RCC_CSR_LSIRDY) == 0); ``` **逻辑分析:** * `RCC->CSR |= RCC_CSR_LSION;`:设置LSI使能位,启用LSI振荡器。 * `while ((RCC->CSR & RCC_CSR_LSIRDY) == 0);`:等待LSI就绪标志位置位,表示LSI稳定。 **2.2 外部时钟源** **2.2.1 外部高速振荡器(HSE)** HSE是一个外部晶体振荡器,其频率通常为1 MHz至25 MHz。HSE的频率精度和稳定性很高,但需要外部元件(晶体和电容)。 **代码块:** ```c // 启用HS ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

Big黄勇

硬件工程师
广州大学计算机硕士,硬件开发资深技术专家,拥有超过10多年的工作经验。曾就职于全球知名的大型科技公司,担任硬件工程师一职。任职期间负责产品的整体架构设计、电路设计、原型制作和测试验证工作。对硬件开发领域有着深入的理解和独到的见解。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
专栏简介
本专栏以 STM32 单片机为核心,提供了一系列深入且实用的教程,旨在帮助从初学者到资深工程师提升他们的 STM32 技能。专栏涵盖了 STM32 的各个方面,包括编程秘籍、时钟系统、中断机制、DMA 传输、总线通信、模数转换、GPIO 操作、定时器应用、看门狗定时器、实时时钟、低功耗模式、电源管理、Flash 存储器、启动过程、调试技术、固件升级和系统设计。通过循序渐进的讲解和丰富的示例,本专栏将帮助您掌握 STM32 的原理、配置和应用,从而开发出高效可靠的嵌入式系统。
立即解锁

专栏目录

最新推荐

【自动化部署实战】:使用Ansible轻松部署Kubernetes v1.30集群

![【自动化部署实战】:使用Ansible轻松部署Kubernetes v1.30集群](https://media.dev.to/cdn-cgi/image/width=1000,height=420,fit=cover,gravity=auto,format=auto/https%3A%2F%2F2.zoppoz.workers.dev%3A443%2Fhttps%2Fdev-to-uploads.s3.amazonaws.com%2Fuploads%2Farticles%2Fy1lxgv8phqpvybu1240v.png) # 1. 自动化部署的理论基础 自动化部署是现代IT运维中不可或缺的一部分,它极大地提高了工作效率,减少了人为错误,并且使得部署过程更

电赛H题:基于云平台的自动驾驶小车数据管理,云平台数据管理的未来趋势

![电赛H题:基于云平台的自动驾驶小车数据管理,云平台数据管理的未来趋势](https://i.loli.net/2019/05/27/5cebfc83729d444773.jpg) # 摘要 本文综述了电赛H题的云平台自动驾驶小车的技术应用和发展前景。文章首先概述了电赛H题的背景和云平台自动驾驶小车的基本概念。接着,详细探讨了自动驾驶小车数据管理的理论基础,包括数据生命周期管理、云平台数据管理原理以及数据安全与隐私保护。在实践部分,分析了云平台架构在自动驾驶数据集成中的应用、数据处理与分析的实用技巧以及云平台功能的扩展与优化。最后,展望了云平台数据管理未来的发展趋势,包括物联网技术的融合、

LuGre模型与智能控制算法的完美结合:最新研究与应用趋势

![LuGre模型与智能控制算法的完美结合:最新研究与应用趋势](https://x0.ifengimg.com/res/2023/46902B1569CA5BA4AE0E0F8C5ED6641DBAB9BA74_size119_w1080_h363.png) # 1. 智能控制算法的概述与LuGre模型基础 ## 智能控制算法概述 在现代自动化和智能系统中,智能控制算法扮演着核心角色。随着科技的进步,这些算法不断演进,以适应日益复杂的控制任务。智能控制算法能够处理非线性、不确定性和随机性问题,并且具备自我学习与优化的能力,它们在工业控制、机器人技术、航空航天和其他多个领域得到了广泛应用。

【振动测试的国际视野】:IEC 60068-2-64标准在全球IT行业的应用与影响

![IEC 60068-2-64:2019 环境测试-第2-64部分- 测试Fh:振动、宽带随机和指导- 完整英文电子版(173页)](https://www.allion.com/wp-content/uploads/2024/03/%E5%9C%96%E7%89%873-EN.jpg) # 摘要 IEC 60068-2-64标准是一项针对电子产品振动测试的国际规范,提供了确保产品质量和可靠性的测试方法和要求。本文对IEC 60068-2-64标准进行了全面概述,深入探讨了振动测试的基础理论,包括振动物理学原理、振动对材料和设备的影响,以及测试方法论。特别分析了该标准在IT行业的应用,包括

容器化与编排进阶秘籍:Docker和Kubernetes专家指南

![容器化与编排进阶秘籍:Docker和Kubernetes专家指南](https://www.toolsqa.com/gallery/Docker/6-Verify%20Docker%20Installation.png) # 摘要 本文全面探讨了容器化技术的基础知识、原理及其在现代软件部署中的应用。首先,介绍了容器化的核心概念,并详细解析了Docker技术,包括其基础应用、高级特性和安全性能优化。随后,转向深入解析Kubernetes技术,涵盖核心概念、进阶实践及集群管理和维护。进一步,本文探讨了容器编排的自动化和最佳实践,强调了CI/CD集成、监控策略以及生命周期管理的重要性。最后,展

C++进阶教程:设计高效类结构的5大策略

![C++进阶教程:设计高效类结构的5大策略](https://media.geeksforgeeks.org/wp-content/uploads/20230725222925/Design-Principles.png) # 1. C++类结构设计概述 在C++这门强大的编程语言中,类结构设计是构建复杂系统的基础。本章首先为读者梳理C++中类的概念及其在程序设计中的重要性,然后概述如何通过类的设计来实现数据的封装、继承与多态,最后探讨类设计中常见的设计模式和原则。通过本章的学习,读者将能够从宏观上理解C++面向对象编程的精华,并为深入学习后续章节的高级特性和实践打下坚实的基础。 ##

【Kyber算法标准化之路】:NIST竞赛中的选择与未来展望

![Kyber加密算法](https://d3i71xaburhd42.cloudfront.net/29d0d9bda40dc1892536607b9e8e6b83630a8d3d/12-Figure1-1.png) # 1. 密码学与后量子时代的挑战 在信息技术飞速发展的今天,密码学作为保障信息安全的核心技术,正面临着前所未有的挑战。随着量子计算的兴起,传统的加密算法受到巨大威胁,特别是在量子计算机的强大计算能力面前,许多目前广泛使用的加密方法可能会变得一触即溃。为了应对这种局面,密码学界开始探索后量子密码学(Post-Quantum Cryptography, PQC),旨在发展出能够

【Abaqus-6.14模型转换秘籍】:模型格式导入导出技巧全解

# 1. Abaqus模型转换概述 在工程仿真和有限元分析领域,Abaqus是一款广泛使用的高级有限元分析软件。模型转换是Abaqus中非常关键的一个步骤,它涉及到将不同来源的模型数据转换为可以在Abaqus中使用的形式。模型转换不仅包括文件格式的转换,还涵盖了模型的单位、材料属性以及几何特性的映射,这对于保证仿真结果的准确性和可靠性至关重要。 模型转换过程可能会涉及到的数据类型多样,如CAD模型、计算结果数据等,需要在转换时保持数据的完整性和精确度。因此,理解模型转换的基本概念和工作流程,掌握模型转换的关键技巧,可以有效地提高工作效率,并解决在模型转换过程中遇到的问题。 本章将概述模型

【AI微调秘境】:深度学习优化Llama模型的性能调优秘籍

![【AI微调秘境】:深度学习优化Llama模型的性能调优秘籍](https://media.licdn.com/dms/image/D5612AQGUyAlHfl1a0A/article-cover_image-shrink_720_1280/0/1709195292979?e=2147483647&v=beta&t=Vgd9CucecUux2st3Y3G3u9zL8GgTFvO6zbImJgw3IiE) # 1. 深度学习优化与微调的理论基础 深度学习优化与微调是机器学习领域中的重要课题,对于提高模型性能、适应多样化的应用场景以及降低过拟合风险具有关键意义。本章将为读者提供一个全面的理论

中星瑞典internet的链路聚合:增强网络稳定性和吞吐量的3大秘诀

![中星瑞典internet的链路聚合:增强网络稳定性和吞吐量的3大秘诀](https://img-blog.csdnimg.cn/5c383a98914241b1a2efb29325da76d4.jpeg) # 摘要 链路聚合作为网络工程中提升网络性能的重要技术,通过将多个物理链路捆绑成一个逻辑链路来增强带宽和可靠性。本文首先介绍了链路聚合的基本概念及其重要性,随后深入探讨了其技术原理,包括定义、工作原理、技术优势及协议标准。在实践操作章节中,本文详细阐述了链路聚合的配置步骤、应用场景以及维护和故障排除的方法。通过中星瑞典internet的实际案例,分析了链路聚合在真实环境中的应用和成效。