【进阶篇】数据探索性分析:统计描述与可视化展示

发布时间: 2024-06-24 18:43:44 阅读量: 214 订阅数: 209
PDF

探索性数据分析

![python数据分析与可视化合集](https://ask.qcloudimg.com/http-save/8934644/afc79812e2ed8d49b04eddfe7f36ae28.png) # 1. 数据探索性分析概述** 数据探索性分析(EDA)是一种数据分析方法,旨在通过对数据的初步检查和可视化,发现数据中的模式、趋势和异常值。EDA是数据分析过程中至关重要的一步,因为它可以帮助数据分析师了解数据,并为后续的深入分析提供基础。 EDA通常包括以下步骤: * 数据收集和预处理 * 统计描述分析 * 数据可视化展示 * 假设检验和建模 通过这些步骤,EDA可以帮助数据分析师: * 了解数据的分布和特征 * 识别异常值和数据中的潜在问题 * 生成关于数据模式和趋势的假设 * 为后续的深入分析提供指导 # 2. 统计描述分析 统计描述分析是数据探索性分析中的一项重要技术,用于对数据进行定量和定性描述,揭示其基本特征和分布规律。 ### 2.1 数值型数据的描述 数值型数据是具有数值意义的数据,可以进行算术运算。其描述指标主要分为集中趋势指标和离散趋势指标。 #### 2.1.1 集中趋势指标 集中趋势指标反映了数值型数据集中分布的中心位置,常用指标包括: - **平均值(Mean)**:所有数据的算术平均值,反映了数据的典型值。 - **中位数(Median)**:将数据从小到大排序后,居于中间位置的值,不受极端值影响。 - **众数(Mode)**:出现频率最高的值,反映了数据的集中点。 ```python import numpy as np data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] # 计算平均值 mean = np.mean(data) print("平均值:", mean) # 计算中位数 median = np.median(data) print("中位数:", median) # 计算众数 mode = np.mode(data) print("众数:", mode) ``` #### 2.1.2 离散趋势指标 离散趋势指标反映了数值型数据分布的离散程度,常用指标包括: - **范围(Range)**:最大值与最小值的差值,反映了数据的极差。 - **方差(Variance)**:数据与平均值的平方差的平均值,反映了数据的离散程度。 - **标准差(Standard Deviation)**:方差的平方根,具有与原始数据相同的单位,更易于理解。 ```python # 计算范围 range = np.max(data) - np.min(data) print("范围:", range) # 计算方差 variance = np.var(data) print("方差:", variance) # 计算标准差 std_dev = np.std(data) print("标准差:", std_dev) ``` ### 2.2 分类型数据的描述 分类型数据是具有类别属性的数据,不能进行算术运算。其描述指标主要包括频数分布和相关性分析。 #### 2.2.1 频数分布 频数分布统计了分类型数据中每个类别的出现频率,反映了数据的分布情况。 ```python import pandas as pd data = pd.DataFrame({ "性别": ["男", "女", "男", "女", "男", "女", "男", "女"], "年龄": [20, 30, 25, 28, 32, 26, 29, 31] }) # 统计频数分布 freq_dist = data["性别"].value_counts() print("频数分布:\n", freq_dist) ``` #### 2.2.2 相关性分析 相关性分析衡量了两个分类型变量之间的相关程度,常用指标包括: - **卡方检验**:检验两个分类型变量之间是否存在关联,返回卡方统计量和p值。 - **相关系数(Cramer's V)**:反映两个分类型变量之间相关性的强度,取值范围为0到1。 ```python # 计算卡方统计量和p值 chi_square, p_value = pd.crosstab(data["性别"], data["年龄"]).chi2_contingency() print("卡方统计量:", chi_square) print("p值:", p_value) # 计算相关系数 cramer_v = pd.c ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

李_涛

知名公司架构师
拥有多年在大型科技公司的工作经验,曾在多个大厂担任技术主管和架构师一职。擅长设计和开发高效稳定的后端系统,熟练掌握多种后端开发语言和框架,包括Java、Python、Spring、Django等。精通关系型数据库和NoSQL数据库的设计和优化,能够有效地处理海量数据和复杂查询。
专栏简介
本专栏汇集了全面的 Python 数据分析与可视化教程,涵盖从基础到进阶的各个方面。专栏分为基础篇和进阶篇,提供循序渐进的学习路径。基础篇包括数据分析与可视化入门、数据结构与类型、NumPy 库、Pandas 库、数据清洗、Matplotlib 基础和 Seaborn 库实践。进阶篇深入探讨数据探索性分析、数据预处理、数据聚合、时间序列分析、数据采样、数据合并、数据转换、数据统计描述、数据特征工程、数据建模、模型评估、交互式可视化、数据分析案例分析、数据清洗与预处理技巧、数据探索性分析、数据分组与聚合分析、数据合并与连接、数据筛选与过滤、数据转换与重塑、时间序列数据处理、数据可视化入门、数据可视化进阶、数据可视化艺术、多图合成与子图布局、数据可视化互动性、数据可视化输出、数据可视化实例分析、数据分析案例解析、数据分析工具箱、数据分析实用技巧、数据分析项目实战、高级数据处理技巧、数据透视表与交叉分析、高级数据清洗、时间序列分析、高级数据可视化、数据可视化优化、交互式可视化、数据分析与机器学习集成、数据分析管道与自动化、高级数据合并与连接、数据处理性能优化、数据采样与重采样、数据处理中的异常值检测与处理技巧、数据处理中的缺失值处理策略与方法、数据处理中的数据转换与规范化技术、数据分析中的特征工程与衍生变量创建、数据分析中的模型评估与交叉验证技巧、数据分析中的模型解释与可解释性分析、数据分析中的结果可视化与报告生成技巧、数据分析中的项目部署与实际应用案例。此外,专栏还提供了丰富的实战演练,涵盖数据爬取、聚合、分组、时间序列分析、金融、医疗、市场营销、社交媒体、旅游、环境、物流、农业和体育等领域的实际数据分析案例。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

Dremio数据目录:简化数据发现与共享的6大优势

![Dremio数据目录:简化数据发现与共享的6大优势](https://www.informatica.com/content/dam/informatica-com/en/blogs/uploads/2021/blog-images/1-how-to-streamline-risk-management-in-financial-services-with-data-lineage.jpg) # 1. Dremio数据目录概述 在数据驱动的世界里,企业面临着诸多挑战,例如如何高效地发现和管理海量的数据资源。Dremio数据目录作为一种创新的数据管理和发现工具,提供了强大的数据索引、搜索和

OpenCV扩展与深度学习库结合:TensorFlow和PyTorch在人脸识别中的应用

![OpenCV扩展与深度学习库结合:TensorFlow和PyTorch在人脸识别中的应用](https://dezyre.gumlet.io/images/blog/opencv-python/Code_for_face_detection_using_the_OpenCV_Python_Library.png?w=376&dpr=2.6) # 1. 深度学习与人脸识别概述 随着科技的进步,人脸识别技术已经成为日常生活中不可或缺的一部分。从智能手机的解锁功能到机场安检的身份验证,人脸识别应用广泛且不断拓展。在深入了解如何使用OpenCV和TensorFlow这类工具进行人脸识别之前,先让

【C8051F410 ISP编程与固件升级实战】:完整步骤与技巧

![C8051F410中文资料](https://img-blog.csdnimg.cn/20200122144908372.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2xhbmc1MjM0OTM1MDU=,size_16,color_FFFFFF,t_70) # 摘要 本文深入探讨了C8051F410微控制器的基础知识及其ISP编程原理与实践。首先介绍了ISP编程的基本概念、优势、对比其它编程方式以及开发环境的搭建方法。其次,阐

【MIPI DPI带宽管理】:如何合理分配资源

![【MIPI DPI带宽管理】:如何合理分配资源](https://www.mipi.org/hs-fs/hubfs/DSIDSI-2 PHY Compatibility.png?width=1250&name=DSIDSI-2 PHY Compatibility.png) # 1. MIPI DPI接口概述 ## 1.1 DPI接口简介 MIPI (Mobile Industry Processor Interface) DPI (Display Parallel Interface) 是一种用于移动设备显示系统的通信协议。它允许处理器与显示模块直接连接,提供视频数据传输和显示控制信息。

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

![【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南](https://cdn.armbian.com/wp-content/uploads/2023/06/mekotronicsr58x-4g-1024x576.png) # 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。

Linux环境下的PyTorch GPU加速:CUDA 12.3详细配置指南

![Linux环境下的PyTorch GPU加速:CUDA 12.3详细配置指南](https://i-blog.csdnimg.cn/blog_migrate/433b8f23abef63471898860574249ac9.png) # 1. PyTorch GPU加速的原理与必要性 PyTorch GPU加速利用了CUDA(Compute Unified Device Architecture),这是NVIDIA的一个并行计算平台和编程模型,使得开发者可以利用NVIDIA GPU的计算能力进行高性能的数据处理和深度学习模型训练。这种加速是必要的,因为它能够显著提升训练速度,特别是在处理

【ISO9001-2016质量手册编写】:2小时速成高质量文档要点

![ISO9001-2016的word版本可拷贝和编辑](https://ikmj.com/wp-content/uploads/2022/02/co-to-jest-iso-9001-ikmj.png) # 摘要 本文旨在为读者提供一个关于ISO9001-2016质量管理体系的全面指南,从标准的概述和结构要求到质量手册的编写与实施。第一章提供了ISO9001-2016标准的综述,第二章深入解读了该标准的关键要求和条款。第三章和第四章详细介绍了编写质量手册的准备工作和实战指南,包括组织结构明确化、文档结构设计以及过程和程序的撰写。最后,第五章阐述了质量手册的发布、培训、复审和更新流程。本文强

【Ubuntu 18.04自动化数据处理教程】:构建高效无人值守雷达数据处理系统

![【Ubuntu 18.04自动化数据处理教程】:构建高效无人值守雷达数据处理系统](https://17486.fs1.hubspotusercontent-na1.net/hubfs/17486/CMS-infographic.png) # 1. Ubuntu 18.04自动化数据处理概述 在现代的IT行业中,自动化数据处理已经成为提高效率和准确性不可或缺的部分。本章我们将对Ubuntu 18.04环境下自动化数据处理进行一个概括性的介绍,为后续章节深入探讨打下基础。 ## 自动化数据处理的需求 随着业务规模的不断扩大,手动处理数据往往耗时耗力且容易出错。因此,实现数据的自动化处理

【集成化温度采集解决方案】:单片机到PC通信流程管理与技术升级

![【集成化温度采集解决方案】:单片机到PC通信流程管理与技术升级](https://www.automation-sense.com/medias/images/modbus-tcp-ip-1.jpg) # 摘要 本文系统介绍了集成化温度采集系统的设计与实现,详细阐述了温度采集系统的硬件设计、软件架构以及数据管理与分析。文章首先从单片机与PC通信基础出发,探讨了数据传输与错误检测机制,为温度采集系统的通信奠定了基础。在硬件设计方面,文中详细论述了温度传感器的选择与校准,信号调理电路设计等关键硬件要素。软件设计策略包括单片机程序设计流程和数据采集与处理算法。此外,文章还涵盖了数据采集系统软件

【数据处理的思维框架】:万得数据到Python的数据转换思维导图

![【数据处理的思维框架】:万得数据到Python的数据转换思维导图](https://img-blog.csdnimg.cn/20190110103854677.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zNjY4ODUxOQ==,size_16,color_FFFFFF,t_70) # 1. 数据处理的必要性与基本概念 在当今数据驱动的时代,数据处理是企业制定战略决策、优化流程、提升效率和增强用户体验的核心

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )