活动介绍

【进阶】jieba库高级分词与停用词过滤的技巧

立即解锁
发布时间: 2024-06-25 07:56:42 阅读量: 372 订阅数: 298
GZ

jieba分词词典和停用词

![【进阶】jieba库高级分词与停用词过滤的技巧](https://img-blog.csdnimg.cn/20181220162513564.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1Nha3VyYTU1,size_16,color_FFFFFF,t_70) # 1. jieba库基础介绍** jieba库是一个基于前缀词典构建的中文分词工具包,它采用前缀词典和动态规划算法相结合的方式,实现了中文分词、词性标注、关键词提取、情感分析等功能。jieba库具有分词速度快、准确率高、支持自定义词典等优点,广泛应用于自然语言处理、信息检索、机器学习等领域。 # 2. jieba库高级分词技巧 jieba库除了基本的中文分词功能外,还提供了丰富的分词扩展功能,包括词性标注、关键词提取和情感分析等。本章将深入探讨这些高级分词技巧,帮助读者充分利用jieba库进行更深入的文本处理任务。 ### 2.1 词性标注 **2.1.1 词性标注的基本原理** 词性标注是自然语言处理中的一项重要任务,其目的是为每个单词分配一个词性标签,如名词、动词、形容词等。词性标注对于后续的文本分析任务至关重要,如词法分析、句法分析和语义分析等。 **2.1.2 jieba库的词性标注实现** jieba库提供了基于HMM(隐马尔可夫模型)的词性标注功能。HMM是一种概率模型,它假设单词的词性序列是一个隐含的马尔可夫链,即当前单词的词性只与前一个单词的词性有关。 jieba库的词性标注模型是由大量语料库训练得到的。该模型包含了词语的词频、词性转移概率和发射概率等信息。在进行词性标注时,jieba库会根据HMM模型计算每个单词在不同词性下的概率,并选择概率最大的词性作为该单词的词性标签。 ```python import jieba # 对句子进行词性标注 sentence = "自然语言处理是一门很有趣的学科" pos_tags = jieba.posseg.cut(sentence) # 打印词性标注结果 for word, pos in pos_tags: print(f"{word}\t{pos}") ``` **代码逻辑解读:** * `jieba.posseg.cut(sentence)`:对句子进行词性标注,返回一个生成器对象,其中每个元素是一个元组,包含单词和词性标签。 * `for word, pos in pos_tags`:遍历生成器对象,并打印每个单词和词性标签。 **参数说明:** * `sentence`:需要进行词性标注的句子。 ### 2.2 关键词提取 **2.2.1 TF-IDF算法简介** 关键词提取是文本处理中另一项重要的任务,其目的是从文本中提取出最重要的关键词,以概括文本的主要内容。TF-IDF(词频-逆文档频率)算法是一种广泛使用的关键词提取算法。 TF-IDF算法基于以下两个指标: * **词频(TF)**:单词在文本中出现的次数。 * **逆文档频率(IDF)**:单词在整个语料库中出现的文档数的倒数。 TF-IDF算法通过计算每个单词的TF-IDF值来衡量其重要性。TF-IDF值高的单词被认为是文本中重要的关键词。 **2.2.2 jieba库的关键词提取实现** jieba库提供了基于TF-IDF算法的关键词提取功能。jieba库的关键词提取算法首先计算每个单词的TF-IDF值,然后根据TF-IDF值对单词进行排序,并返回排名前N的单词作为关键词。 ```python import jieba # 对句子进行关键词提取 sentence = "自然语言处理是一门很有趣的学科" keywords = jieba.analyse.extract_tags(sentence, topK=5) # 打印关键词提取结果 print(keywords) ``` **代码逻辑解读:** * `jieba.analyse.extract_tags(sentence, topK=5)`:对句子进行关键词提取,返回一个列表,其中包含排名前5的关键词。 * `topK`:指定要提取的关键词数量。 **参数说明:** * `sentence`:需要进行关键词提取的句子。 * `topK`:要提取的关键词数量。 ### 2.3 情感分析 **2.3.1 情感分析的基本原理** 情感分析是自然语言处理中的一项高级任务,其目的是识别和提取文本中表达的情感。情感分析对于理解用户反馈、分析社交媒体数据和进行舆情监测等任务至关重要。 **2.3.2 jieba库的情感分析实现** jieba库提供了基于情感词典的情感分析功能。jieba库的情感词典包含了大量的情感词,每个情感词都有一个情感得分。在进行情感分析时,jieba库会统计文本中情感词的出现次数,并根据情感词的得分计算文本的情感倾向。 ```python import jieba # 对句子进行情感分析 sentence = "这部电影太好看了,我太喜欢了" sentiment = jieba.analyse.sentiment_score(sentence) # 打印情感分析结果 print(sentiment) ``` **代码逻辑解读:** * `jieba.analyse.sentiment_score(sentence)`:对句子进行情感分析,返回一个情感得分。 * 情感得分是一个浮点数,范围为[-1, 1]。正值表示文本表达积极的情感,负值表示文本表达消极的情感。 **参数说明:** * `sentence`:需要进行情感分析的句子。 # 3. jieba库停用词过滤技巧 ### 3.1 停用词的概念和作用 #### 3.1.1 停用词的定义 停用词,又称无意义词,是指在自然语言处理中经常出现但对文本分析贡献较小的词语。这些词语通常是虚词,如冠词、介词、连词等,它们本身不携带重要的语义信息,在分词过程中可以被过滤掉,以提高分词效率和准确性。 #### 3.1.2 停用词对分词的影响 停用词的过滤可以对分词结果产生以下影响: - **减少分词结果的冗余:**停用词
corwn 最低0.47元/天 解锁专栏
买1年送3月
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

李_涛

知名公司架构师
拥有多年在大型科技公司的工作经验,曾在多个大厂担任技术主管和架构师一职。擅长设计和开发高效稳定的后端系统,熟练掌握多种后端开发语言和框架,包括Java、Python、Spring、Django等。精通关系型数据库和NoSQL数据库的设计和优化,能够有效地处理海量数据和复杂查询。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
专栏简介
本专栏汇集了全面的 Python 自然语言处理 (NLP) 知识,涵盖从基础到进阶的各个方面。专栏中包含一系列文章,深入探讨 NLP 的各个主题,包括: * 基础知识:NLP 概述、Python 基础语法、文本数据结构、文本预处理、分词库、特征提取、分类算法、情感分析、相似度计算、数据集获取、命名实体识别、文本生成、语言模型、文本聚类、摘要和关键词提取、信息抽取、机器翻译。 * 进阶内容:多语言处理、NLP 工具库、高级文本表示学习、深度学习优化策略、高级文本生成、高级命名实体识别、高级文本相似度计算、情感分析调优、高级文本聚类、高级文本摘要、信息抽取高级应用、机器翻译模型优化、多语言处理挑战、GPT-3 原理和应用、BERT 与 GPT-2 对比、多模态文本生成、文本生成优化策略、文本生成应用案例分析、多语言机器翻译趋势。 * 实战演练:文本情感分析、文本分类、命名实体识别、文本相似度计算、文本摘要生成、信息抽取、机器翻译、文本数据清洗、特征提取、分类模型实现、情感分析实现、命名实体识别实现、文本相似度计算实现、文本聚类算法实现、文本摘要生成实现、信息抽取实现、机器翻译模型实现、文本生成模型实现、文本生成与对话系统实现、文本生成与图像处理结合实现、文本生成与语音合成实现、文本生成与知识图谱实现。
立即解锁

专栏目录

最新推荐

Ubuntu18.04登录问题:桌面环境更新与回退的终极指导

![Ubuntu18.04登录问题:桌面环境更新与回退的终极指导](https://vitux.com/wp-content/uploads/2019/06/word-image-272.png) # 1. Ubuntu 18.04登录问题概述 ## 1.1 登录问题的常见表现 在使用Ubuntu 18.04时,用户可能会遭遇登录问题,这些通常表现在登录界面无法正常加载、登录后系统无法正确响应、或是账户验证环节出现错误。这些问题可能影响到用户的日常工作效率。 ## 1.2 影响登录问题的因素 登录问题可能是由多种因素造成的,包括系统更新未完成、系统文件损坏、硬件故障或不兼容的硬件驱动。通过

ESP3数据预处理速成课:一步到位提升水声数据质量的7大技巧

![ESP3数据预处理速成课:一步到位提升水声数据质量的7大技巧](https://img-blog.csdnimg.cn/20190110103854677.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zNjY4ODUxOQ==,size_16,color_FFFFFF,t_70) # 摘要 本文全面介绍了ESP3数据预处理的各个方面,从基础的数据清洗到高级的数据变换技巧,再到特定应用领域的数据处理方法。首先,

Creo4.0自定义工具提升设计自动化:高级宏编写教程

![Creo4.0自定义工具提升设计自动化:高级宏编写教程](https://i.materialise.com/blog/wp-content/uploads/2016/11/ptc-creo-3d-modeling-1-1024x576.png) # 1. Creo 4.0自定义工具概述 在现代设计与制造行业中,高效的自动化工具对于优化设计流程至关重要。Creo 4.0,作为PTC公司推出的一款先进的CAD设计软件,引入了自定义工具来提升用户设计效率和准确性。自定义工具不仅包括一系列宏(宏是一系列预先编写和保存的指令,可用来执行重复性的任务),还包括用户界面的定制选项和模板。通过这些工具

【数字助手Cortana在Windows 11中的智能应用】:提升工作效率与管理

![关于Windows11的高效办公应用(40):多因素认证(MFA)在Windows 11中的配置方法。](https://support.content.office.net/en-us/media/0d0dcb61-425d-4e45-81ec-dc446db7200f.png) # 1. 数字助手Cortana的起源与进化 在数字助手的领域中,Cortana占据了一席之地。它是微软公司为Windows系统开发的智能助手,旨在通过自然语言处理和机器学习技术,为用户提供更加便捷的交互体验。自从2014年首次亮相以来,Cortana经历了多次迭代和进化,不仅在功能上得到了极大的增强,其智能

【雷达系统设计中的Smithchart应用】:MATLAB实战演练与案例分析

![【雷达系统设计中的Smithchart应用】:MATLAB实战演练与案例分析](https://opengraph.githubassets.com/bc0f3f02f9945182da97959c2fe8f5d67dbc7f20304c8997fddbc1a489270d4f/kalapa/MatLab-E-Smithchart) # 摘要 Smithchart作为一种用于表示和分析复数阻抗的工具,在射频工程领域有着广泛的应用。本文首先介绍了Smithchart的基本理论与概念,然后详细探讨了其在MATLAB环境中的实现,包括编程环境的搭建、数据输入和表示方法。本文进一步将Smithc

云计算守护神:网络安全中的革新应用

![云计算守护神:网络安全中的革新应用](https://www.qtera.co.id/wp-content/uploads/2019/11/backuprestore.jpg) # 摘要 本文探讨了云计算环境下的网络安全基础和管理实践,深入分析了加密技术、访问控制、网络安全监控与威胁检测等关键网络安全技术的应用。文章进一步讨论了云服务安全管理的合规性、事件响应策略和安全架构设计的优化,以及人工智能、安全自动化、边缘计算等前沿技术在云计算安全中的应用。最后,本文展望了云计算安全领域的法律、伦理问题以及持续创新的研究方向,旨在为网络安全专家和云计算服务提供者提供全面的指导和建议。 # 关键

【市场霸主】:将你的Axure RP Chrome插件成功推向市场

# 摘要 随着Axure RP Chrome插件的快速发展,本文为开发人员提供了构建和优化该插件的全面指南。从架构设计、开发环境搭建、功能实现到测试与优化,本文深入探讨了插件开发的各个环节。此外,通过市场调研与定位分析,帮助开发人员更好地理解目标用户群和市场需求,制定有效的市场定位策略。最后,本文还讨论了插件发布与营销的策略,以及如何收集用户反馈进行持续改进,确保插件的成功推广与长期发展。案例研究与未来展望部分则为插件的进一步发展提供了宝贵的分析和建议。 # 关键字 Axure RP;Chrome插件;架构设计;市场定位;营销策略;用户体验 参考资源链接:[解决AxureRP在谷歌浏览器中

【NXP S32K3高效开发】:S32DS环境搭建与版本控制的无缝对接

![【NXP S32K3高效开发】:S32DS环境搭建与版本控制的无缝对接](https://opengraph.githubassets.com/e15899fc3bf8dd71217eaacbaf5fddeae933108459b561ffc7174e7c5f7e7c28/nxp-auto-support/S32K1xx_cookbook) # 1. NXP S32K3微控制器概述 ## 1.1 S32K3微控制器简介 NXP S32K3系列微控制器(MCU)是专为汽车和工业应用而设计的高性能、低功耗32位ARM® Cortex®-M系列微控制器。该系列MCU以其卓越的实时性能、丰富的

IEEE14系统数据注入攻击深度分析

![IEEE14系统数据注入攻击深度分析](https://img-blog.csdnimg.cn/20210123205838998.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTk2NTYxMg==,size_16,color_FFFFFF,t_70) # 1. IEEE14系统概述与数据注入攻击简介 ## 1.1 IEEE14系统概述 IEEE14系统是电力系统分析中常用的测试系统,用于模拟和验证各种电

AGA-8进阶应用剖析:复杂烃类分析中的开源工具运用

# 摘要 本文综述了AGA-8标准及其在复杂烃类分析中的应用,涵盖了从理论基础到实际操作的各个方面。AGA-8作为分析复杂烃类的标准化方法,不仅在理论上有其独特的框架,而且在实验室和工业实践中显示出了重要的应用价值。本文详细探讨了开源分析工具的选择、评估以及它们在数据处理、可视化和报告生成中的运用。此外,通过案例研究分析了开源工具在AGA-8分析中的成功应用,并对未来数据分析技术如大数据、云计算、智能算法以及自动化系统在烃类分析中的应用前景进行了展望。文章还讨论了数据安全、行业标准更新等挑战,为该领域的发展提供了深刻的洞见。 # 关键字 AGA-8标准;复杂烃类分析;开源分析工具;数据处理;