unordered_map的初始化和赋值方法详解

立即解锁
发布时间: 2024-04-11 12:35:49 阅读量: 2141 订阅数: 111
RAR

STL中map用法详解

# 1. unordered_map的基本介绍 unordered_map是 C++ STL 中的一个关联容器,内部实现采用哈希表,因此插入、删除、查找元素的时间复杂度为O(1)。它提供了快速查找的能力,比起普通的map在查找元素时效率更高。 unordered_map支持快速的插入和删除操作,并且在查找元素时效率更高,因为其内部实现使用哈希表,可以直接通过哈希函数找到对应元素的位置。在需要快速查找元素并且不需要有序排列的情况下,unordered_map是一个很好的选择。 unordered_map的模板声明为`std::unordered_map<key_type, value_type>`,其中key_type为键的类型,value_type为值的类型。通过键值对存储,可以方便快速地查找值。 # 2. unordered_map的初始化 unordered_map 是 C++ STL 中的一种关联容器,它使用哈希表来实现,支持快速的插入、删除和查找操作。在使用 unordered_map 之前,我们需要对其进行初始化。本章节将介绍三种初始化 unordered_map 的方法,并通过具体的示例来演示每种方法的使用。 #### 2.1 利用花括号初始化unordered_map 利用花括号初始化 unordered_map 是一种简洁方便的方法,可以直接指定键值对进行初始化。示例代码如下: ```cpp // 初始化一个空的 unordered_map unordered_map<int, string> my_map1; // 初始化一个包含键值对的 unordered_map unordered_map<int, string> my_map2 = {{1, "apple"}, {2, "banana"}, {3, "orange"}}; ``` #### 2.2 利用make_pair初始化unordered_map 我们也可以利用 make_pair 函数来创建键值对,然后插入到 unordered_map 中进行初始化。示例代码如下: ```cpp // 初始化一个空的 unordered_map unordered_map<int, string> my_map3; // 插入键值对进行初始化 my_map3.insert(make_pair(1, "apple")); my_map3.insert(make_pair(2, "banana")); my_map3.insert(make_pair(3, "orange")); ``` #### 2.3 利用insert方法进行初始化 除了利用 make_pair 直接插入键值对外,我们还可以使用 insert 方法来向 unordered_map 中插入元素。示例代码如下: ```cpp // 初始化一个空的 unordered_map unordered_map<int, string> my_map4; // 使用 insert 方法插入键值对进行初始化 my_map4.insert(pair<int, string>(1, "apple")); my_map4.insert(pair<int, string>(2, "banana")); my_map4.insert(pair<int, string>(3, "orange")); ``` 通过上述方法,我们可以灵活地初始化 unordered_map,并根据需要选择最适合的初始化方式。 # 3. unordered_map的插入和访问操作 #### 3.1 插入键值对到unordered_map 在unordered_map中插入键值对时,可以使用`insert`函数或者直接使用下标操作符`[]`进行插入。使用`insert`函数时,需要传入一个`pair`类型的键值对作为参数。而直接使用下标操作符时,如果指定的键不存在,则会自动创建一个新的键值对。 ```cpp #include <iostream> #include <unordered_map> int main() { std::unordered_map<std::string, int> umap; // 使用insert函数插入键值对 umap.insert(std::make_pair("apple", 10)); // 使用下标操作符插入键值对 umap["banana"] = 20; return 0; } ``` #### 3.2 修改unordered_map中的值 要修改unordered_map中已有键对应的值,可以直接使用下标操作符`[]`或者通过`insert_or_assign`函数来实现。直接使用下标操作符时,如果键不存在,会先进行插入操作再修改值;而`insert_or_assign`函数可以直接修改已有键对应的值。 ```cpp #include <iostream> #include <unordered_map> int main() { std::unordered_map<std::string, int> umap = {{"apple", 10}, {"banana", 20}}; // 修改值 umap["banana"] = 30; // 使用insert_or_assign umap.insert_or_assign("apple", 15); return 0; } ``` #### 3.3 查找unordered_map中的元素 要查找unordered_map中的元素,可以使用`find`函数。如果找到指定键,则返回指向该键值对的迭代器;如果找不到,则返回`end()`。另外,使用`count`函数可以判断某个键是否存在,返回值为1表示存在,为0表示不存在。 ```cpp #include <iostream> #include <unordered_map> int main() { std::unordered_map<std::string, int> umap = {{"apple", 10}, {"banana", 20}}; // 查找元素 auto it = umap.find("apple"); if (it != umap.end()) { std::cout << "Found: " << it->second << std::endl; } else { std::cout << "Not found" << std::endl; } // 判断键是否存在 if (umap.count("banana")) { std::cout << "Key exists" << std::endl; } else { std::cout << "Key does not exist" << std::endl; } return 0; } ``` # 4. unordered_map的遍历和删除操作 unordered_map 提供了各种方法来遍历和删除其中的元素,让我们来逐一学习如何操作。 #### 4.1 遍历unordered_map中的所有元素 在 C++ 中,我们可以使用迭代器或范围for循环来遍历 unordered_map 中的所有元素。 ##### 4.1.1 使用迭代器遍历 通过使用迭代器来遍历 unordered_map,我们可以访问每个键值对并对其执行相应操作。下面是一个示例代码: ```cpp unordered_map<string, int> myMap = {{"apple", 5}, {"banana", 3}, {"cherry", 8}}; // 使用迭代器遍历 for(auto it = myMap.begin(); it != myMap.end(); ++it) { cout << "Key: " << it->first << ", Value: " << it->second << endl; } ``` ##### 4.1.2 使用范围for循环遍历 范围for循环(range-based for loop)提供了一种更加简洁的方法来遍历 unordered_map: ```cpp for(const auto& pair : myMap) { cout << "Key: " << pair.first << ", Value: " << pair.second << endl; } ``` #### 4.2 删除unordered_map中的元素 在 unordered_map 中,我们可以删除单个元素或清空整个容器。 ##### 4.2.1 删除单个元素 通过使用 erase() 方法来删除单个元素,可以根据键的值来删除指定的元素。示例如下: ```cpp // 删除键值为"banana"的元素 myMap.erase("banana"); ``` ##### 4.2.2 清空unordered_map 如果想要清空整个 unordered_map,可以使用 clear() 方法来实现: ```cpp myMap.clear(); ``` 通过以上方法,我们可以方便地遍历和删除 unordered_map 中的元素,灵活应用在实际开发中。 # 5. 总结与拓展 unordered_map 是 C++ STL 提供的关联容器,具有快速查找、插入和删除操作的特点。本节将对 unordered_map 与 map 进行比较,介绍更多 unordered_map 的操作方法,并分析其应用场景。 #### 5.1 unordered_map与map的对比 在使用 STL 中的关联容器时,往往需要根据具体场景选择合适的容器类型。unordered_map 和 map 都可以实现键值对的存储和快速查找,但它们的内部实现方式不同。 | 特点 | unordered_map | map | |----------------|----------------------------|---------------------------| | 内部实现 | 哈希表 | 红黑树 | | 查找效率 | O(1)平均,最坏O(n) | O(logn) | | 有序性 | 无序 | 有序 | | 内存占用 | 使用较多内存空间 | 内存占用较小 | | 适合场景 | 查找频繁、不需要有序输出 | 有序输出要求较高 | 在实际应用中,如果对元素的有序性要求不高,且需要快速的查找和插入操作,可以选择使用 unordered_map。而如果需要按照键的大小顺序进行遍历或输出,或者内存空间有限,可以选择使用 map。 #### 5.2 unordered_map更多操作方法介绍 除了插入、访问和删除操作外,unordered_map 还提供了一些其他常用的操作方法,例如: - `count(key)`: 返回容器中key值为key的元素个数,通常用于判断元素是否存在。 - `size()`: 返回容器中元素的个数。 - `bucket_count()`: 返回哈希表中桶的数量。 - `bucket(key)`: 返回具有特定键key的桶的索引。 - `empty()`: 判断容器是否为空。 下面是一个简单示例代码: ```cpp #include <iostream> #include <unordered_map> int main() { std::unordered_map<int, std::string> myMap = {{1, "apple"}, {2, "banana"}, {3, "orange"}}; // 判断元素是否存在 if (myMap.count(2) > 0) { std::cout << "Key 2 exists in the map." << std::endl; } // 打印容器大小和桶的数量 std::cout << "Size of the map: " << myMap.size() << std::endl; std::cout << "Number of buckets: " << myMap.bucket_count() << std::endl; return 0; } ``` #### 5.3 unordered_map的应用场景分析 unordered_map 由于其查找效率高、插入和删除操作快捷等优势,在实际应用中有着广泛的应用场景,例如: - 缓存系统:用于存储键值对,提高数据的访问速度。 - 字符串处理:统计字符出现的次数,快速查找、替换操作。 - 数据处理:用于数据的索引,快速查找特定元素。 总的来说,unordered_map 适合于对元素的快速查找和插入操作要求较高的场景,尤其适用于大数据量的存储和管理。在选择容器类型时,应根据具体需求综合考虑使用 unordered_map。
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
专栏简介
本专栏全面深入地探讨了 unordered_map,一种高效的哈希表数据结构。它从 unordered_map 和 map 的区别和应用场景分析开始,深入介绍了其初始化、赋值、插入、删除、迭代和查找操作的技巧和性能分析。专栏还探讨了元素访问方式、哈希函数自定义、冲突处理机制、内存管理和线程安全性。此外,它还提供了 unordered_map 与自定义对象和 STL 容器结合的实例,以及在实际项目、大数据处理和并发操作中的应用和性能测试。通过算法复杂度分析和异常处理机制,本专栏提供了对 unordered_map 的全面理解,帮助开发者充分利用其在各种应用中的优势。

最新推荐

【宝塔面板数据备份攻略】:保障服务器数据安全的3步法

![【宝塔面板数据备份攻略】:保障服务器数据安全的3步法](https://www.idctalk.com/wp-content/uploads/2023/05/3MIKO.png) # 1. 宝塔面板与数据备份的重要性 在现代的互联网业务中,数据的价值不言而喻。数据丢失不仅会造成经济损失,还可能影响企业的信誉和客户关系。因此,对于任何一个使用宝塔面板管理服务器的IT从业者而言,理解宝塔面板与数据备份的重要性是不可或缺的。 ## 1.1 数据丢失的风险 服务器和网站的数据容易受到各种内外因素的威胁,如硬件故障、软件缺陷、网络攻击等。数据丢失的风险时刻存在,而一旦数据丢失,恢复过程可能既复

【以太网链路层可靠性分析】:确保数据传输安全的关键策略

![【以太网链路层可靠性分析】:确保数据传输安全的关键策略](https://media.fs.com/images/community/wp-content/uploads/2017/11/cut-through-switching2.png) # 1. 以太网链路层概述 ## 1.1 以太网链路层的定义 以太网链路层,通常被认为是OSI模型中的第二层,主要负责在单一局域网内的数据帧传输和接收。其核心任务包括介质访问控制、帧的封装和解封装、错误检测和处理以及流量控制等。 ## 1.2 链路层的协议和标准 该层中最著名的协议是以太网协议,其标准由IEEE 802.3定义。链路层的其他协议还

【算法优化实战技巧】:提高GA_NSGA-II执行效率的有效方法

![【算法优化实战技巧】:提高GA_NSGA-II执行效率的有效方法](https://opengraph.githubassets.com/86993b985af844eeb9b465470741466a09e49952cb2d26f33c034a1fdde8a08e/wayc04/a-simple-example-of-NSGA-II) # 摘要 多目标优化算法是解决复杂决策问题的关键技术,其中遗传算法(GA)和其改进版本NSGA-II被广泛应用于寻找Pareto最优解。本文首先概述了多目标优化算法和遗传算法的基本概念,着重介绍了NSGA-II的原理,包括其快速非支配排序、密度估计与拥挤

响应式设计的CrystalTile2应用构建:设备适配全攻略

![CrystalTile2](https://cdn.akamai.steamstatic.com/apps/dota2/images/dota_react/heroes/social/luna.jpg) # 摘要 响应式设计作为一种确保网页和应用在不同设备上提供一致用户体验的设计方法,在现代Web开发中扮演着至关重要的角色。本文首先介绍了响应式设计的基础概念和其在多变终端环境中的重要性。随后,详细探讨了CrystalTile2框架的响应式特性,包括其框架结构、响应式组件以及媒体查询的应用,以实现灵活的设计和开发。文中还分享了响应式设计实践技巧,如布局转换、图像媒体响应式处理和设备兼容性解

【达梦数据库内存管理:专家级内存优化指南】

![【达梦数据库内存管理:专家级内存优化指南】](https://ask.qcloudimg.com/http-save/yehe-8223537/36eda959e59d78c6049f4704cb8cfb04.png) # 1. 达梦数据库内存管理概述 在数据库管理系统的架构中,内存管理是优化性能与保证数据处理效率的关键因素。达梦数据库作为国内领先的数据库产品,其内存管理机制尤为关键。本章将概述达梦数据库内存管理的基本概念和作用,为读者提供对后续章节深入讨论的基础认识。 ## 1.1 内存管理的必要性 数据库操作高度依赖于内存来快速读取和写入数据。达梦数据库通过高效的内存管理策略,确保

性能优化视角下的Linux namespace:隔离与资源共享的平衡术

![性能优化视角下的Linux namespace:隔离与资源共享的平衡术](https://linuxpolska.com/wp-content/uploads/2019/08/Horizon-Network0.png) # 1. Linux namespace基础概述 Linux namespace是Linux内核的一项重要功能,它允许用户对系统资源进行分隔和隔离,从而实现多用户环境下资源的独立管理和安全隔离。namespace的出现,为Linux容器技术的发展奠定了基础,是现代云计算和虚拟化技术不可或缺的一部分。 在本章中,我们将首先了解namespace的基本概念,它是如何在Lin

【网络配置案例分析】:Ubuntu 18.04虚拟机与地平线J6板端的连接问题解决之道

![ubuntu 18.04虚拟机以太网网段与地平线J6板端连接配置](https://avatars.dzeninfra.ru/get-zen_doc/4790423/pub_608aa24bac11a83ee0147162_608aa2cfd66dff63dbe706da/scale_1200) # 1. Ubuntu 18.04与地平线J6板端连接概览 ## 1.1 Ubuntu与地平线J6的初次邂逅 当您准备将Ubuntu 18.04系统与地平线J6开发板连接时,您将开始一段探索嵌入式系统与桌面操作系统间高效协同工作的旅程。本章将概述连接过程的基本要求与步骤,为您提供一个顺利开始的基

深入信号的编码与解码:51单片机摩尔斯电码通信技术

![深入信号的编码与解码:51单片机摩尔斯电码通信技术](https://opengraph.githubassets.com/a495fb101484b4d38f58ed6b8c6d4ff46fcd62b1405dbdf83531d67dc9c98c37/MOOC-Z/51-Single-chip-microcomputer) # 1. 摩尔斯电码通信技术概述 ## 1.1 摩尔斯电码的历史与应用 摩尔斯电码(Morse code)是一种早期的编码技术,由美国艺术家和发明家萨缪尔·摩尔斯于1836年发明。最初,这种编码系统是通过电报技术进行远程通信,每个字母和数字通过长短不同的电信号来表示

数据可视化深度应用探索:Jtopo让数据讲故事的秘诀

![数据可视化深度应用探索:Jtopo让数据讲故事的秘诀](https://opengraph.githubassets.com/785b16f4aeca5e86010d54a4561b955eaecdf4fabda1e3e7d6554c08c53882fd/wuln/jTopo) # 摘要 数据可视化作为一种将复杂数据转化为直观图形的技术,对于辅助决策和数据解读具有基础性的重要性。本文详细探讨了Jtopo图表库,分析了其提供的多样化图表类型及设计理念,并讨论了在不同行业中的应用场景。特别地,本文强调了Jtopo的定制化能力和扩展性,以及在实践应用中的技巧,包括数据绑定、交互式功能、视觉定制

单元测试实战:医院预约挂号系统代码质量提升的4大方法

![单元测试实战:医院预约挂号系统代码质量提升的4大方法](https://opengraph.githubassets.com/bc0f0b9481c1b895e27e38beab3c8b31a447bd17deeb07c385a6d8c0a7850cc0/shuhongfan/hospital) # 摘要 随着医疗信息化的快速发展,医院预约挂号系统的稳定性和可靠性变得至关重要。单元测试作为保证软件质量的关键实践,在其中扮演着不可或缺的角色。本文从单元测试的基础理论出发,深入探讨了单元测试的重要性、原则和最佳实践,并通过医院预约挂号系统的案例分析,阐述了编写可测试代码、设计有效测试案例的实