基于合作博弈理论的自动驾驶决策方法
立即解锁
发布时间: 2025-09-05 01:33:59 阅读量: 5 订阅数: 5 AIGC 


类人驾驶决策与控制
# 基于合作博弈理论的自动驾驶决策方法
## 1. 自动驾驶决策基础公式
在自动驾驶中,涉及到一系列关键的基础公式来描述车辆的运动状态和约束条件:
- **速度与加速度计算**:
- 横向速度:\(\dot{X_V^i_{\sigma}} = [X_V^i_{\sigma}(k + 1) - X_V^i_{\sigma}(k)] / \Delta T\)
- 纵向速度:\(\dot{Y_V^i_{\sigma}} = [Y_V^i_{\sigma}(k + 1) - Y_V^i_{\sigma}(k)] / \Delta T\)
- 横向加速度:\(\ddot{X_V^i_{\sigma}} = [X_V^i_{\sigma}(k + 2) - 2X_V^i_{\sigma}(k + 1) + X_V^i_{\sigma}(k)] / \Delta T^2\)
- 纵向加速度:\(\ddot{Y_V^i_{\sigma}} = [Y_V^i_{\sigma}(k + 2) - 2Y_V^i_{\sigma}(k + 1) + Y_V^i_{\sigma}(k)] / \Delta T^2\)
- **约束条件**:
- 转向角约束:\(\vert\delta_{V^i_f}\vert \leq \delta_{max_f}\),\(\vert\Delta\delta_{V^i_f}\vert \leq \Delta\delta_{max_f}\)
- 加速度变化约束:\(\vert\Delta a_{V^i_x}\vert \leq \Delta a_{max_x}\)
- 所有约束可紧凑表示为:\(\Phi_{V^i}(\Delta s_{V^i_{\sigma}}, \Delta y_{V^i_{\sigma}}, \Delta \phi_{V^i_{\sigma}}, a_{V^i_{x,\sigma}}, a_{V^i_{y,\sigma}}, j_{V^i_{x,\sigma}}, j_{V^i_{y,\sigma}}, v_{V^i_{x,\sigma}}, X_{V^i_{\sigma}}, Y_{V^i_{\sigma}}, \delta_{V^i_f}, \Delta \delta_{V^i_f}, \Delta a_{V^i_x})\)
## 2. 基于联盟博弈的决策方法
### 2.1 成本函数与决策序列
在时间步 \(k\),车辆 \(V^i\) 的成本函数序列表示为:\(J_{V^i}(k + 1|k), J_{V^i}(k + 2|k), \cdots, J_{V^i}(k + N_p|k)\)
决策序列通过以下方式推导得出:\(\hat{u}_{V^i}(k|k), \hat{u}_{V^i}(k + 1|k), \cdots, \hat{u}_{V^i}(k + N_c - 1|k)\),其中 \(\hat{u}_{V^i}(q|k) = [\Delta a_{V^i_x}(q|k), \Delta \delta_{V^i_f}(q|k), \beta_{V^i}(q|k)]^T\),\(q = k, k + 1, \cdots, k + N_c - 1\)
车辆 \(V^i\) 的特征函数为:\(\Lambda_{V^i} = \sum_{p = k + 1}^{k + N_p} \vert\vert J_{V^i}(p|k) \vert\vert_Q^2 + \sum_{q = k}^{k + N_c - 1} \vert\vert \hat{u}_{V^i}(q|k) \vert\vert_R^2\),这里 \(Q\) 和 \(R\) 表示加权矩阵。
### 2.2 四种联盟类型及决策策略
- **单玩家联盟**:每个 CAV 形成独立的单玩家联盟,如 \(S_1 = \{V^1\}, S_2 = \{V^2\}, S_3 = \{V^3\}\)。决策序列为:
- \((\Delta a_{V^1^*_x}, \Delta \delta_{V^1^*_f}, \beta_{V^1^*}) = \arg \min \Lambda_{V^1}\)
- \((\Delta a_{V^2^*_x}, \Delta \delta_{V^2^*_f}, \beta_{V^2^*}) = \arg \min \Lambda_{V^2}\)
- \(\Delta a_{V^3^*_x} = \arg \min \Lambda_{V^3}\)
- 约束条件:\(\Phi_{V^1} \leq 0, \Phi_{V^2} \leq 0, \Phi_{V^3} \leq 0, \beta_{V^1}(\beta_{V^1} + 1) = 0, \beta_{V^2}(\beta_{V^2} + 1) = 0\)
- **多玩家联盟**:例如 \(V_1\) 和 \(V_2\) 形成双玩家联盟,\(V_3\) 为单玩家联盟,即 \(S_1 = \{V^1, V^2\}, S_2 = \{V^3\}\)。决策序列为:
- \((\Delta a_{V^1^*_x}, \Delta \delta_{V^1^*_f}, \beta_{V^1^*}, \Delta a_{V^2^*_x}, \Delta \delta_{V^2^*_f}, \beta_{V^2^*}) = \arg \min [\Lambda_{V^1} + \Lambda_{V^2}]\)
- \(\Delta a_{V^3^*_x} = \arg \min \Lambda_{V^3}\)
- 约束条件:\(\Phi_{V^1} \leq 0, \Phi_{V^2} \leq 0, \Phi_{V^3} \leq 0, \beta_{V^1}(\beta_{V^1} + 1) = 0, \beta_{V^2}(\beta_{V^2} + 1) = 0\)
- **大联盟**:\(V_1, V_2\) 和 \(V_3\) 形成大联盟,\(S_1 = \{V^1, V^2, V^3\}\)。决策序列为:
- \((\Delta a_{V^1^*_x}, \Delta \delta_{V^1^*_f}, \beta_{V^1^*}, \Delta a_{V^2^*_x}, \Delta \delta_{V^2^*_f}, \beta_{V^2^*}, \Delta a_{V^3^*_x}) = \arg \min [\Lambda_{V^1} + \Lambda_{V^2} + \Lambda_{V^3}]\)
- 约束条件:\(\Phi_{V^1} \leq 0, \Phi_{V^2} \leq 0, \Phi_{V^3} \leq 0, \beta_{V^1}(\beta_{V^1} + 1) = 0, \beta_{V^2}(\beta_{V^2} + 1) = 0\)
- **包含子联盟的大联盟**:所有 CAV 形成大联盟,其中存在子联盟,如 \(S_1 = \{\{V^1, V^4\}, V^2, V^3\}\)。决策序列为:
-
0
0
复制全文
相关推荐










