PyTorch中常用的优化器及其区别

立即解锁
发布时间: 2024-04-09 15:21:38 阅读量: 95 订阅数: 47
PDF

详解PyTorch批训练及优化器比较

# 1. 优化器简介 ### 1.1 优化器作用 优化器是深度学习模型训练过程中至关重要的组成部分,其作用主要包括: - 调整模型参数使得损失函数最小化; - 加速模型收敛过程,减少训练时间; - 提高模型的泛化能力,减少过拟合现象。 ### 1.2 梯度下降算法概述 梯度下降是优化器中最基本也是最常用的算法之一,其核心思想是沿着损失函数的梯度方向不断调整参数值,以减小损失函数的值。梯度下降算法主要分为以下几种类型: - 批量梯度下降(Batch Gradient Descent):在每次更新参数时都使用全量数据进行计算,计算量大,但通常能够更快地收敛; - 随机梯度下降(Stochastic Gradient Descent):每次更新参数只使用一个样本,计算量小但会带来参数更新的不稳定性; - 小批量梯度下降(Mini-batch Gradient Descent):综合了批量梯度下降和随机梯度下降的优点,在每次更新参数时使用一小部分数据进行计算,既减少了计算量又保持了一定的稳定性。 梯度下降算法在优化器中的应用既能够帮助模型更好地学习数据特征,又能够提高模型的收敛速度和泛化能力,是深度学习训练不可或缺的重要环节。 # 2. 常用的 PyTorch 优化器 ### 2.1 SGD (随机梯度下降) SGD(Stochastic Gradient Descent)是最基础的优化器之一,其通过每次迭代计算随机抽取的一部分数据的梯度来更新模型参数。 在 PyTorch 中,使用SGD优化器的方式如下: ```python import torch import torch.optim as optim model = Net() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) ``` ### 2.2 Adam 优化器 Adam是一种组合了动量法和RMSprop的优化算法,结合了两者的优点,在训练深度学习模型时表现较好。 PyTorch中使用Adam优化器的方式如下: ```python import torch import torch.optim as optim model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999)) ``` **Adam优化器参数:** | 参数 | 含义 | |-------------|--------------------------| | lr | 学习率 | | betas | 参数β1和β2的系数 | | eps | 为了数值稳定性而添加的项 | ### 流程图示例: ```mermaid graph TD; A(开始) --> B{条件判断}; B -- 是 --> C[执行操作C]; C --> D{条件判断}; D -- 是 --> E[执行操作E]; D -- 否 --> F[执行操作F]; B -- 否 --> G[执行操作G]; F --> G; G --> H(结束); E --> H; ``` 通过以上内容,可以了解到SGD和Adam两种常用的PyTorch优化器的基本原理、使用方法和参数设置,有助于在实际应用中选择合适的优化器来提高模型训练效果。 # 3. SGD 优化器详解 在深度学习中,SGD(Stochastic Gradient Descent)是最经典的优化算法之一,其原理和公式如下: #### 3.1 SGD 原理及公式 - **原理**: - SGD 是一种迭代算法,每次迭代都使用部分数据来计算梯度,然后更新模型参数,通过大量迭代来最小化损失函数,找到最优模型参数。 - **公式**: - 梯度下降更新公式:$w_{t+1} = w_{t} - \eta \nabla J(w_{t})$ - $w_{t+1}$: 下一时刻的模型参数 - $w_{t}$: 当前时刻的模型参数 - $\eta$: 学习率 - $\nabla J(w_{t})$: 损失函数 $J$ 对参数 $w_{t}$ 的梯度 #### 3.2 动量参数介绍 SGD 还涉及到一个重要概念——动量(Momentum),其作用是加速收敛过程,使得优化器在参数更新时能够考虑之前的梯度信息,具体细节如下: - **参数更新公式**: - $v_{t+1} = \gamma v_{t} + \eta \nabla J(w_{t})$ - $v_{t}$: t 时刻的速度 - $\gamma$: 动量参数,通常取值 0.9 - 其余符号与上文相同 - **加速度更新公式**: - $w_{t+1} = w_{t} - v_{t+1}$ - 根据动量参数计算的速度调整参数 $w_{t}$,并进行更新 通过动量参数的引入,SGD 在优化过程中可以更快地收敛于局部最优解,避免陷入局部最小值,并且有助于减少参数更新时的震
corwn 最低0.47元/天 解锁专栏
买1年送3月
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
专栏简介
本专栏全面介绍了 PyTorch 的安装、配置和使用。从初探 PyTorch 的概念和优势,到安装和配置指南,以及编写第一个 PyTorch 程序的教程,专栏逐步深入 PyTorch 的核心功能。它涵盖了 Tensor 基础操作、自动求导、模型定义和训练流程,以及数据加载和预处理技巧。此外,还深入探讨了优化器、损失函数、模型评估、学习率调度、模型保存和加载,以及深度神经网络、卷积神经网络、循环神经网络和注意力机制等高级主题。通过循序渐进的讲解和丰富的代码示例,本专栏为读者提供了在 PyTorch 中构建和训练深度学习模型所需的全面知识和实践指南。

最新推荐

Coze大白话系列:插件开发进阶篇(二十):插件市场推广与用户反馈循环,打造成功插件

![coze大白话系列 | 手把手创建插件全流程](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/0575a5a65de54fab8892579684f756f8~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 插件开发的基本概念与市场前景 ## 简介插件开发 插件开发是一种软件开发方式,它允许开发者创建小型的、功能特定的软件模块,这些模块可以嵌入到其他软件应用程序中,为用户提供额外的功能和服务。在当今高度专业化的软件生态系统中,插件已成为扩展功能、提升效率和满足个性化需

【任务调度专家】:FireCrawl的定时任务与工作流管理技巧

![【任务调度专家】:FireCrawl的定时任务与工作流管理技巧](https://bambooagile.eu/wp-content/uploads/2023/05/5-4-1024x512.png) # 1. FireCrawl概述与安装配置 ## 1.1 FireCrawl简介 FireCrawl 是一个为IT专业人士设计的高效自动化工作流工具。它允许用户创建、管理和执行复杂的定时任务。通过为常见任务提供一套直观的配置模板,FireCrawl 优化了工作流的创建过程。使用它,即使是非技术用户也能按照业务需求设置和运行自动化任务。 ## 1.2 FireCrawl核心特性 - **模

AI代理系统的微服务与容器化:简化部署与维护的现代化方法

![AI代理系统的微服务与容器化:简化部署与维护的现代化方法](https://drek4537l1klr.cloudfront.net/posta2/Figures/CH10_F01_Posta2.png) # 1. 微服务和容器化技术概述 ## 1.1 微服务与容器化技术简介 在现代IT行业中,微服务和容器化技术已经成为构建和维护复杂系统的两大核心技术。微服务是一种将单一应用程序作为一套小服务开发的方法,每个服务运行在其独立的进程中,服务间通过轻量级的通信机制相互协调。这种架构模式强调业务能力的独立性,使得应用程序易于理解和管理。与此同时,容器化技术,尤其是Docker的出现,彻底改变

自然语言处理的未来:AI Agent如何革新交互体验

![自然语言处理的未来:AI Agent如何革新交互体验](https://speechflow.io/fr/blog/wp-content/uploads/2023/06/sf-2-1024x475.png) # 1. 自然语言处理的概述与演变 自然语言处理(NLP)作为人工智能的一个重要分支,一直以来都是研究的热点领域。在这一章中,我们将探讨自然语言处理的定义、基本原理以及它的技术进步如何影响我们的日常生活。NLP的演变与计算机科学、语言学、机器学习等多学科的发展紧密相连,不断地推动着人工智能技术的边界。 ## 1.1 NLP定义与重要性 自然语言处理是指计算机科学、人工智能和语言学领

【内容创作与个人品牌】:粉丝4000后,UP主如何思考未来

![【内容创作与个人品牌】:粉丝4000后,UP主如何思考未来](https://visme.co/blog/wp-content/uploads/2020/12/25-1.jpg) # 1. 内容创作的核心理念与价值 在数字时代,内容创作不仅是表达个人思想的窗口,也是与世界沟通的桥梁。从文字到视频,从博客到播客,内容创作者们用不同的方式传达信息,分享知识,塑造品牌。核心理念强调的是真实性、原创性与价值传递,而价值则体现在对观众的启发、教育及娱乐上。创作者需深入挖掘其创作内容对受众的真正意义,不断优化内容质量,以满足不断变化的市场需求和观众口味。在这一章节中,我们将探讨内容创作的最本质的目的

Coze智能体工作流深度应用

![Coze智能体工作流深度应用](https://i2.hdslb.com/bfs/archive/2097d2dba626ded599dd8cac9e951f96194e0c16.jpg@960w_540h_1c.webp) # 1. Coze智能体工作流概述 在当今数字化转型的浪潮中,工作流程自动化的重要性日益凸显。Coze智能体作为一个创新的工作流解决方案,它通过工作流引擎将自动化、集成和智能化的流程管理带到一个新的高度。本章将对Coze智能体的工作流概念进行简要概述,并通过后续章节逐步深入了解其工作流引擎理论、实践操作以及安全合规性等方面。 工作流可以视为业务操作的自动化表达,它

【数据可视化工具】:Gemini+Agent在数据可视化中的实际应用案例

![【数据可视化工具】:Gemini+Agent在数据可视化中的实际应用案例](https://www.cryptowinrate.com/wp-content/uploads/2023/06/word-image-227329-3.png) # 1. 数据可视化的基础概念 数据可视化是将数据以图形化的方式表示,使得人们能够直观地理解和分析数据集。它不单是一种艺术表现形式,更是一种有效的信息传达手段,尤其在处理大量数据时,能够帮助用户快速发现数据规律、异常以及趋势。 ## 1.1 数据可视化的定义和目的 数据可视化将原始数据转化为图形,让用户通过视觉感知来处理信息和认识规律。目的是缩短数

AI agent的性能极限:揭秘响应速度与准确性的优化技巧

![AI agent的性能极限:揭秘响应速度与准确性的优化技巧](https://img-blog.csdnimg.cn/img_convert/18ba7ddda9e2d8898c9b450cbce4e32b.png?wx_fmt=png&from=appmsg&wxfrom=5&wx_lazy=1&wx_co=1) # 1. AI agent性能优化基础 AI agent作为智能化服务的核心,其性能优化是确保高效、准确响应用户需求的关键。性能优化的探索不仅限于算法层面,还涉及硬件资源、数据处理和模型架构等多方面。在这一章中,我们将从基础知识入手,分析影响AI agent性能的主要因素,并

【视频版权与合规速成】:在Coze平台上保护你的原创内容

![【视频版权与合规速成】:在Coze平台上保护你的原创内容](https://www.tubebuddy.com/wp-content/uploads/2022/05/Fair-Use-Disclaimer_-Examples-Guide-1024x365.png) # 1. 视频版权基础与法律框架 ## 1.1 版权概念的起源与发展 版权,一个与创意和表达密不可分的法律概念,其起源可以追溯到18世纪欧洲的印刷权。随着数字化和互联网的兴起,版权的定义和边界不断拓展,逐渐形成了今天涵盖文学、艺术和科学作品的全面保护体系。 ## 1.2 视频版权的重要性 在视频内容成为主流的当今社会,视频版

金融服务中AI Agent的崛起:智能投资顾问与风险管理

![金融服务中AI Agent的崛起:智能投资顾问与风险管理](https://www.nimbleappgenie.com/blogs/wp-content/uploads/2024/03/Robo-Advisor-Platforms-Case-Studies-Success-Stories-.webp) # 1. 金融服务中的AI Agent概述 金融服务行业正经历数字化转型,其中AI Agent(人工智能代理)扮演着越来越重要的角色。AI Agent,一种能够通过学习和适应来执行复杂任务的软件代理,已经广泛应用于金融服务的多个领域,如智能投资顾问、风险管理和合规性监控等。 在这一章,