file-type

面向对象建模技术在Visual C++中的应用

版权申诉
546KB | 更新于2025-08-09 | 190 浏览量 | 0 下载量 举报 收藏
download 限时特惠:#9.90
标题“week2-models.rar_软件设计/软件工程_Visual C++”指明了文件的主题和范围。它表示这是一个与软件设计和软件工程相关的文件包,特别强调了Visual C++语言环境。该文件包以“.rar”格式压缩,表明它是一个可解压的压缩文件。标题中还包含了“models”,意指该文件中可能包含软件模型方面的内容,可能涉及模型的创建、实现与应用。 描述“面向对象的建模技术”进一步明确了文件内容的重点,即在软件设计和软件工程的背景下,专门探讨面向对象编程(OOP)的模型技术。面向对象建模是软件开发中的一种核心技能,它涉及到使用对象来表示系统中的实体、它们的属性、行为以及这些实体之间的关系。对象模型的构建和分析帮助开发者更好地理解和规划复杂软件系统,同时提高软件的可重用性和可维护性。 标签“软件设计/软件工程 Visual C++”则给文件内容提供了进一步的分类。软件设计与软件工程是密切相关的学科,软件设计关注的是软件的构架、组件和接口的设计,而软件工程则扩展到了整个软件开发流程、项目管理和质量保证。标签中的“Visual C++”意味着在这些领域中将讨论与Microsoft Visual C++开发环境相关的面向对象建模技术。Visual C++是一种广泛使用的集成开发环境(IDE),它支持C++语言的开发,并且提供了丰富的功能以帮助开发人员设计、编码和调试面向对象的软件项目。 文件名称列表只有一个“week2-models.ppt”,这表明该文件是一个PowerPoint演示文稿,它可能包含了授课或讲座的幻灯片。由于是“week2-models”,我们可以推测这个演示文稿是课程的第二个星期的材料,专注于面向对象建模技术。PPT文件中可能包含以下几个方面的详细知识点: 1. 面向对象编程的基本原则:封装、继承和多态。 2. UML(统一建模语言)的使用:UML是软件工程中用于系统建模的图形化语言,它有助于设计软件蓝图,能够将系统的各个部分表示出来。 3. 类图、对象图、序列图和状态图等UML图表的创建与解读,这些图表是软件设计中常用的建模工具。 4. 如何使用Visual C++的类和对象来实现面向对象的概念。 5. 面向对象设计模式的应用:设计模式是解决特定问题的经过验证的模板或通用解决方案。 6. 软件架构和设计原则:如SOLID原则,这是一组面向对象设计和编程的原则,旨在使软件更易于理解、灵活和可维护。 7. 实例研究和案例分析:分析真实的软件项目中的建模实践和问题解决策略。 这个PPT文件可能是给具有一定软件开发背景的学生或专业人士讲授的,帮助他们深入理解面向对象的建模技术,并将这些技术应用于使用Visual C++开发的软件项目中。通过学习这些内容,参与者可以提高他们的软件设计能力,从而构建出更高质量、更有效率、更易于维护的软件产品。

相关推荐

filetype

当前代码为取一段时间区间内的指标数据,可以取周一至周日的日期,但是我想看周维度的数据,例如当前可以取w6(2025.2.10-2025.2.16)一周的数据,而我想看w6(2025.2.10-2025.2.16) W7(2025.2.17-2025.2.23) W8(2025.2.24-2025.3.2) W9(2025.3.3-2025.3.9) W10(2025.3.10-2025.3.16)对应的指标数据,请帮我用sql实现:SELECT MAX(avg_daily_order_cnt) AS avg_daily_order_cnt, MAX(avg_daily_shop_cnt) AS avg_daily_shop_cnt, MAX(merchants_with_shops_xiaoyu_3) AS merchants_with_shops_xiaoyu_3, MAX(merchants_with_shops_dayu_3) AS merchants_with_shops_dayu_3, MAX(new_shop_count) AS new_shop_count FROM ( -- 表1:计算平均每日订单数和平均每日门店数 SELECT ROUND(AVG(wd_cnt)/10000,1) AS avg_daily_order_cnt, CEIL(AVG(shop_cnt)) AS avg_daily_shop_cnt , null AS merchants_with_shops_xiaoyu_3, null AS merchants_with_shops_dayu_3, null AS new_shop_count FROM( SELECT a.dt, COUNT(DISTINCT a.shop_id) AS shop_cnt, COUNT(DISTINCT a.trade_order_id) AS wd_cnt FROM ( SELECT a.dt, a.order_id, a.trade_order_id, a.trade_order_source, a.shop_id, b.channel_id, CASE WHEN b.channel_id IN (100002,100003,100004) AND get_json_object(d.ext_info, '$.createSource') = 2 THEN 1 ELSE 0 END AS is_app_h5 FROM mart_peisong.fact_dap_waybill_snap a LEFT JOIN mart_peisong.fact_dap_order_snap b ON a.order_id = b.id LEFT JOIN mart_peisong.fact_dap_delivery_order_snap d ON a.delivery_id = d.id AND d.valid = 1 WHERE a.dt between $$begindatekey and $$enddatekey AND a.status = 50 AND a.special_type IN (0, 3, 4, 7) UNION ALL SELECT dt, id AS order_id, trade_order_id, trade_order_source,

filetype

springboot+MyBatis连接MySql数据库遇到问题:### Error querying database. Cause: com.mysql.cj.jdbc.exceptions.CommunicationsException: Communications link failure The last packet successfully received from the server was 11,751 milliseconds ago. The last packet sent successfully to the server was 11,858 milliseconds ago. ### The error may exist in file [/app/tomcat/webapps/project/WEB-INF/classes/mapper/PersonWeekMapper.xml] ### The error may involve com.xmsme.mapper.PersonWeekMapper.selectPersonWeekList-Inline ### The error occurred while setting parameters ### SQL: SELECT count(0) FROM (SELECT WEEK.id, WEEK.sub_time, WEEK.need_thing, WEEK.plan_content, WEEK.target_content, WEEK.sub_time AS update_time, WEEK.create_time, WEEK.week_start, WEEK.user_id, WEEK.week_end, readInfo.id AS readId, readInfo.read_status AS readStatus, updateor.nick_name FROM t_person_weekly AS WEEK LEFT JOIN sys_user sUser ON sUser.user_id = WEEK.user_id LEFT JOIN t_read_info readInfo ON readInfo.business_id = WEEK.id AND readInfo.read_type = 'PER' LEFT JOIN sys_user updateor ON updateor.user_id = WEEK.update_by LEFT JOIN sys_user_role uRole ON uRole.user_id = WEEK.update_by LEFT JOIN sys_user_post uPost ON uPost.user_id = WEEK.user_id LEFT JOIN t_project_person person ON person.user_id = WEEK.user_id LEFT JOIN t_project_person Pperson ON Pperson.project_id = person.project_id WHERE 1 = 1 AND WEEK.is_del = 0 AND WEEK.draft = 'N' AND Pperson.user_id = ? GROUP BY WEEK.id) table_count ### Cause: com.mysql.cj.jdbc.exceptions.CommunicationsException: Communications link failure The last packet successfully received from the server was 11,751 milliseconds ago. The last packet sent successfully to the server was 11,858 milliseconds ago. ; Communications link failure The last packet successfully received from the server was 11,751 milliseconds ago. The last packet sent successfully to the server was 11,858 milliseconds ago.; nested exception is com.mysql.cj.jdbc.exceptions.CommunicationsException: Communications link failure The last packet successfully received from the server was 11,751 milliseconds ago. The last packet sent successfully to the server was 11,858 milliseconds ago.

filetype

<select id="getWeeklyData" resultType="com.huawei.it.tgmes.tmas.weeklyplanaccuracy.entity.bo.BaseWeeklyPlanAccuracy"> With temp1 As ( Select distinct to_char(current_timestamp, 'yyyyMMdd') As batchNo, to_char(trunc(wwi.plan_online_time,'IW'),'yyyy-MM-dd') As week, to_char(trunc(wwi.plan_online_time,'IW'),'yyyyMMdd') As weekjoin, wwi.plan_online_time As planOnLineTime, wwi.workorder_name As workOrderName, wwi.state_Type As stateType, case when wwi.manufacture_mode ='ODM' then 'ODM' when substr(wwi.mfg_site_name,1,2)='华为' then '自制' when wwi.manufacture_mode='EMS' then 'EMS' end As manufactureMode, wwi.item_code As itemCode, wwi.work_serction As workSerction, wwi.work_serction As prodItemType, wwi.prod_model_code As prodModelCode, wwi.release_time As releaseTime, wwi.factory_code As factoryCode, bfi.factory_name As factoryName, wwi.workorder_qty As planQty, bpi.prodLineCode, bpi.prodLineCnName, bpi.prodLineEnName, bpi.prodSeriesCode, bpi.prodSeriesCnName, coalesce(wpc.prod_convert_name, wpc.prod_series_en_name) As prodSeriesEnName From ( Select distinct wf.plan_online_time,wf.workorder_name,wf.state_Type,wf.item_code,wf.work_serction, wf.release_time,wf.factory_code,wf.workorder_qty,wf.prod_model_code,wp.manufacture_mode,wp.mfg_site_name From T_WAVE_WORKORDER_INFO wf inner join T_EBC_PROD_INSTR wp on wf.workorder_name = wp.prod_instr_no and wp.manufacture_mode is not null and wp.manufacture_mode <![CDATA[<>]]> '' and wp.manufacture_mode <![CDATA[<>]]> 'NA' Where wf.state_Type In (3, 12, 4) And (substring (wf.workorder_name,3,1) = 'Z' or substring (wf.workorder_name,3,1) = '1') <![CDATA[ And wf.plan_online_time >= TO_TIMESTAMP(#{startTime,jdbcType=VARCHAR}, 'yyyy-mm-dd hh24:mi:ss') And wf.plan_online_time <= TO_TIMESTAMP(#{endTime,jdbcType=VARCHAR}, 'yyyy-mm-dd hh24:mi:ss') ]]> ) wwi Left Join T_BASE_WORKORDER_PROD_CONVERT wpc On wpc.prod_model_code = wwi.prod_model_code Left Join ( Select prod_line_code As prodLineCode, prod_line_cn_name As prodLineCnName, prod_line_en_name As prodLineEnName, prod_series_code As prodSeriesCode, prod_series_cn_name As prodSeriesCnName, prod_series_en_name As prodSeriesEnName, prod_model_code As prodmodelcode From T_BASE_PROD_CATALOG Group By prod_line_code, prod_line_cn_name, prod_line_en_name, prod_family_code, prod_family_cn_name, prod_family_en_name, prod_series_code, prod_series_cn_name, prod_series_en_name, prod_model_code, prod_model_cn_name, prod_model_en_name) bpi On wwi.prod_model_code = bpi.prodmodelcode Left Join t_Base_Factory_Info bfi On wwi.factory_code = bfi.factory_code), temp2 As ( Select batchNo, week, weekjoin, sum(planQty) As workOrderQty, prodItemType, factoryCode, factoryName, prodSeriesEnName, prodLineCode, prodLineCnName, prodLineEnName, prodSeriesCode, prodSeriesCnName, manufactureMode From temp1 Group By (batchNo, week, weekjoin, prodItemType, factoryCode, factoryName, prodSeriesEnName, prodLineCode, prodLineCnName, prodLineEnName, prodSeriesCode, prodSeriesCnName, manufactureMode) ), temp3 As ( Select SUBSTR(T.tmas_version, 6, 13) As weekjoin, t.tmas_version, t.factory_code, t.prod_series_en_name, t.produce_type_cn, sum(t.qty) As systemLockQty From t_base_two_week_lock t Where t.item = '系统互锁量' Group By t.factory_code, t.prod_series_en_name, t.produce_type_cn, t.tmas_version ) Select t2.*, t3.systemLockQty From temp2 t2 Join temp3 t3 On t2.weekjoin = t3.weekjoin And t2.prodItemType = t3.produce_type_cn And t2.factorycode = t3.factory_code And t2.prodSeriesEnName = t3.prod_series_en_name </select> <select id="getByFactoryHeaderList" resultType="com.huawei.it.tgmes.tmas.basedata.entity.vo.KeyValue"> With weeks As ( With daytimes As ( Select daytime::date From generate_series( (Select #{condition.startweekTimeStr}::date),/*--查询开始日期(可根据需求调整)*/ (Select #{condition.endweekTimeStr}::date),/*--查询结束日期(可根据需求调整)*/ '1 day' ) s(daytime) ) Select (Select ts.daytime - (Case When extract(Dow From ts.daytime) = 0 Then 7 Else extract(Dow From ts.daytime) End - 1 || 'day')::interval) week1 From daytimes ts Group By week1 Order By week1 Asc ) <choose> <when test="condition.dimensionStr eq 1"> select to_char(s.week1,'yyyy-mm-dd') as "key", to_char(s.week1,'yyyy-mm-dd') as "value" from weeks s group by "key" order by "key" asc </when> <when test="condition.dimensionStr eq 2"> select to_char(s.week1,'yyyy-mm') as "key", to_char(s.week1,'yyyy-mm') as "value" from weeks s group by "key" order by "key" asc </when> <when test="condition.dimensionStr eq 3"> select to_char(s.week1,'yyyy')||'_Q'||(select quarters from ( select extract (quarter from s.week1) quarters)t ) as "key" , to_char(s.week1,'yyyy')||'_Q'||(select quarters from ( select extract (quarter from s.week1) quarters)t ) as "value" from weeks s group by "key" order by "key" asc </when> <when test="condition.dimensionStr eq 4"> select to_char(s.week1,'yyyy') as "key",to_char(s.week1,'yyyy') as "value" from weeks s group by "key" order by "key" asc </when> </choose> </select>分析这串 代码

filetype

这里面的编码:“ self.node_feat_encoder = nn.Sequential( nn.Linear(time_steps, 16), # 将14个时间步编码为特征 nn.ReLU(), nn.Linear(16, node_feat_dim) )”可以换成正余弦编码吗?数据在输入进去的时候,第一列是时间,请帮我加入正余弦编码:“class TimeCovariates(object): """Extract all time covariates except for holidays.""" def __init__( self, datetimes, normalized = True ): """Init function. Args: datetimes: pandas DatetimeIndex (lowest granularity supported is min) normalized: whether to normalize features or not holiday: fetch holiday features or not Returns: None """ self.normalized = normalized self.dti = datetimes def _minute_of_hour(self): minutes = np.array(self.dti.minute, dtype=np.float32) if self.normalized: minutes = minutes / 59.0 - 0.5 return minutes def _hour_of_day(self): hours = np.array(self.dti.hour, dtype=np.float32) if self.normalized: hours = hours / 23.0 - 0.5 return hours def _day_of_week(self): day_week = np.array(self.dti.dayofweek, dtype=np.float32) if self.normalized: day_week = day_week / 6.0 - 0.5 return day_week def _day_of_month(self): day_month = np.array(self.dti.day, dtype=np.float32) if self.normalized: day_month = day_month / 30.0 - 0.5 return day_month def _day_of_year(self): day_year = np.array(self.dti.dayofyear, dtype=np.float32) if self.normalized: day_year = day_year / 364.0 - 0.5 return day_year def _month_of_year(self): month_year = np.array(self.dti.month, dtype=np.float32) if self.normalized: month_year = month_year / 11.0 - 0.5 return month_year def _week_of_year(self): week_year = np.array(self.dti.strftime("%U").astype(int), dtype=np.float32) if self.normalized: week_year = week_year / 51.0 - 0.5 return week_year def get_covariates(self): """Get all time covariates.""" moh = self._minute_of_hour().reshape(1, -1) hod = self._hour_of_day().reshape(1, -1) dom = self._day_of_month().reshape(1, -1) dow = self._day_of_week().reshape(1, -1) doy = self._day_of_year().reshape(1, -1) moy = self._month_of_year().reshape(1, -1) woy = self._week_of_year().reshape(1, -1) all_covs = [ moh, hod, dom, dow, doy, moy, woy, ] columns = ["moh", "hod", "dom", "dow", "doy", "moy", "woy"] return pd.DataFrame( data=np.vstack(all_covs).transpose(), columns=columns, index=self.dti, )”并帮我分析一下这样是否能够提升预测精度?

pudn01
  • 粉丝: 55
上传资源 快速赚钱