file-type

Slope: 一个C语言的数据可视化库,基于Gtk+和cairo

下载需积分: 9 | 98KB | 更新于2024-11-05 | 34 浏览量 | 0 下载量 举报 收藏
download 立即下载
Slope库特别设计为与Gtk + 3.X版本兼容,并且它所有的图形绘制工作都依赖于cairo图形库,这意味着它不需要依赖于Gtk堆栈之外的其他图形库。 安装Slope库需要首先安装相关的开发工具和依赖库。对于基于Debian或Ubuntu的Linux发行版,可以通过包管理器安装`build-essential`, `cmake`, 和`libgtk-3-dev`。而在Fedora系统上,相应的安装命令为`dnf`。安装完成后,使用`cmake`和`make`命令进行编译安装。具体的步骤包括创建构建目录,进入该目录,运行`cmake`来配置项目,使用`make`来编译代码,最后通过`sudo make install`命令安装编译好的库到系统中。 在编译使用Slope库的程序时,需要在编译器的命令行中添加`-lslope`标志,以便链接到Slope库。如果程序中使用了数学函数,还需要链接数学库,即添加`-lm`标志。编译成功后,可以生成可执行文件,例如在示例中使用`gcc simple.c -lslope -lm -o sim`命令生成名为`sim`的可执行文件。 Slope库支持创建各种图表,如条形图、折线图等,并能通过Slope提供的API进行定制,例如设置颜色、字体等属性,从而生成符合特定需求的视觉化图形。 Slope库的出现降低了数据可视化的复杂性,使得C语言开发者能够更加方便地创建各种图形界面。此外,由于Slope库完全基于Gtk +和cairo,因此能够提供跨平台的能力,并且具备高效和响应速度快的特点。" 知识点: 1. Slope是一个基于Gtk +的C语言数据可视化库,使用LGPL协议。 2. 该库专为与Gtk + 3.X版本集成设计,使用cairo图形库进行图形绘制。 3. 安装Slope库需要先安装开发工具和依赖库,Debian/Ubuntu和Fedora系统的安装命令不同。 4. 编译安装Slope库的步骤:创建构建目录、配置项目、编译代码、安装到系统。 5. 编译使用Slope库的程序时需要添加`-lslope`和`-lm`标志。 6. Slope库可以创建多种类型的图表,支持自定义设置属性。 7. Slope库具有跨平台能力,高效且响应速度快。 8. Slope库降低了数据可视化的复杂度,使C语言开发者能够更便捷地实现数据可视化功能。

相关推荐

filetype

import os import numpy as np import matplotlib.pyplot as plt import re from matplotlib.ticker import MaxNLocator from scipy.stats import linregress # 解决中文显示问题 plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'WenQuanYi Micro Hei'] plt.rcParams['axes.unicode_minus'] = False def natural_sort_key(s): """自然排序算法:确保文件名按数字顺序排列""" return [int(text) if text.isdigit() else text.lower() for text in re.split(r'(\d+)', s)] def normalize_data(data): """归一化数据到[0,1]范围""" min_val = min(data) max_val = max(data) if max_val == min_val: # 避免除以零 return [0.5] * len(data) # 所有值相同,返回0.5 return [(x - min_val) / (max_val - min_val) for x in data] def find_stable_intervals(counts, method='std', min_window=300, max_window=2000, threshold=0.5, merge_gap=300, min_length=500, window_step=50): """ 改进版稳定区间检测:支持三种不同指标 :param counts: 预测框数量列表(已归一化) :param method: 检测方法 ('std', 'cv', 'slope') :param min_window: 最小窗口尺寸 :param max_window: 最大窗口尺寸 :param threshold: 阈值(基于整体统计量) :param merge_gap: 相邻区间合并的最大间隔 :param min_length: 最小有效区间长度 :param window_step: 窗口尺寸增加的步长 :return: 优化后的稳定区间列表 """ n = len(counts) if n == 0: return [] # 返回空列表 # 计算整体统计量(基于归一化数据) total_mean = np.mean(counts) total_std = np.std(counts) # 1. 多窗口尺寸检测机制 base_intervals = [] # 遍历所有窗口尺寸 for window_size in range(min_window, max_window + 1, window_step): # 确保窗口大小不超过数据长度 if window_size > n: continue step_size = max(1, window_size) # 50%重叠滑动 # 使用当前窗口尺寸检测稳定区间 for i in range(0, n - window_size + 1, step_size): window = counts[i:i + window_size] if len(window) < 2: # 至少需要2个点计算 continue # 根据不同方法计算稳定性指标 if method == 'std': # 标准差方法 std_dev = np.std(window) if std_dev < total_std * threshold: base_intervals.append((i, i + window_size - 1)) elif method == 'cv': # 变异系数方法 mean_val = np.mean(window) if mean_val > 0: # 避免除以0 cv = np.std(window) / mean_val if abs(cv) < threshold * (total_std / total_mean): base_intervals.append((i, i + window_size - 1)) elif method == 'slope': # 趋势斜率方法 x = np.arange(len(window)) slope, _, _, _, _ = linregress(x, window) if abs(slope) < threshold * total_std / window_size: base_intervals.append((i, i + window_size - 1)) # 如果没有检测到任何区间,直接返回 if not base_intervals: return [] # 返回空列表 # 2. 合并相邻平稳段 base_intervals.sort(key=lambda x: x[0]) # 确保按起始索引排序 merged_intervals = [] if base_intervals: # 确保列表非空 current_start, current_end = base_intervals[0] for start, end in base_intervals[1:]: if start - current_end <= merge_gap: # 间隔小于合并阈值 current_end = max(current_end, end) # 扩展当前区间 else: merged_intervals.append((current_start, current_end)) current_start, current_end = start, end merged_intervals.append((current_start, current_end)) # 3. 过滤短时伪平稳段 final_intervals = [ (start, end) for start, end in merged_intervals if (end - start + 1) >= min_length # 区间长度包含两端点 ] return final_intervals def plot_box_count_trend(file_list, box_counts, stable_intervals, output_path, title_suffix="", method_name="标准差"): """ 绘制预测框数量变化趋势图并标记稳定区间 :param file_list: 文件名列表 :param box_counts: 原始预测框数量列表 :param stable_intervals: 稳定区间列表 :param output_path: 输出图片路径 :param title_suffix: 标题后缀 :param method_name: 检测方法名称 """ plt.figure(figsize=(20, 10)) # 绘制整体趋势(原始数据) plt.plot(file_list, box_counts, 'b-', linewidth=1.5, label='预测框数量') # 标记稳定区间 - 确保区间显示 for i, (start, end) in enumerate(stable_intervals): interval_files = file_list[start:end + 1] interval_counts = box_counts[start:end + 1] if not interval_counts: # 确保区间有效 continue # 计算区间统计量 avg_count = np.mean(interval_counts) min_count = np.min(interval_counts) max_count = np.max(interval_counts) std_dev = np.std(interval_counts) # 绘制稳定区间 - 增加透明度使区间更明显 plt.fill_between(interval_files, min_count, max_count, color='green', alpha=0.3, # 增加透明度使区间更明显 zorder=0, # 确保填充在数据线下方 label=f'稳定区间{i + 1}' if i == 0 else "") # 添加区间标注 - 确保标注位置正确 mid_idx = start + (end - start) // 2 if mid_idx < len(file_list): # 确保索引有效 plt.annotate(f"区间{i + 1}: {start + 1}-{end + 1}\n均值: {avg_count:.1f}±{std_dev:.1f}", (file_list[mid_idx], avg_count), xytext=(0, 20), textcoords='offset points', ha='center', fontsize=10, bbox=dict(boxstyle="round,pad=0.3", fc="yellow", alpha=0.7), zorder=10) # 确保标注在最上层 # 设置图表属性 plt.title(f'预测框数量变化趋势 - {method_name}{title_suffix}', fontsize=18) plt.xlabel('图像文件名', fontsize=14) plt.ylabel('预测框数量', fontsize=14) plt.xticks(rotation=90, fontsize=7) plt.grid(True, linestyle='--', alpha=0.6) plt.legend(loc='upper right') # 限制X轴刻度数量 plt.gca().xaxis.set_major_locator(MaxNLocator(20)) plt.tight_layout() plt.savefig(output_path, dpi=150, bbox_inches='tight') plt.close() def plot_combined_intervals(file_list, box_counts, intervals_std, intervals_cv, intervals_slope, output_path): """ 绘制三种方法检测结果的合并图 :param file_list: 文件名列表 :param box_counts: 原始预测框数量列表 :param intervals_std: 标准差方法检测的区间 :param intervals_cv: 变异系数方法检测的区间 :param intervals_slope: 趋势斜率方法检测的区间 :param output_path: 输出图片路径 """ plt.figure(figsize=(20, 10)) # 绘制整体趋势(原始数据) plt.plot(file_list, box_counts, 'b-', linewidth=1.5, label='预测框数量') # 为每种方法定义不同的颜色和标签 method_colors = { '标准差': ('green', '标准差区间'), '变异系数': ('blue', '变异系数区间'), '趋势斜率': ('orange', '趋势斜率区间') } # 绘制标准差方法的区间 - 确保区间显示 for i, (start, end) in enumerate(intervals_std): interval_files = file_list[start:end + 1] min_count = min(box_counts[start:end + 1]) max_count = max(box_counts[start:end + 1]) plt.fill_between(interval_files, min_count, max_count, color=method_colors['标准差'][0], alpha=0.3, zorder=0, # 确保填充在数据线下方 label=method_colors['标准差'][1] if i == 0 else "") # 绘制变异系数方法的区间 - 确保区间显示 for i, (start, end) in enumerate(intervals_cv): interval_files = file_list[start:end + 1] min_count = min(box_counts[start:end + 1]) max_count = max(box_counts[start:end + 1]) plt.fill_between(interval_files, min_count, max_count, color=method_colors['变异系数'][0], alpha=0.3, zorder=0, # 确保填充在数据线下方 label=method_colors['变异系数'][1] if i == 0 else "") # 绘制趋势斜率方法的区间 - 确保区间显示 for i, (start, end) in enumerate(intervals_slope): interval_files = file_list[start:end + 1] min_count = min(box_counts[start:end + 1]) max_count = max(box_counts[start:end + 1]) plt.fill_between(interval_files, min_count, max_count, color=method_colors['趋势斜率'][0], alpha=0.3, zorder=0, # 确保填充在数据线下方 label=method_colors['趋势斜率'][1] if i == 0 else "") # 设置图表属性 plt.title('预测框数量变化趋势及稳定区间分析 - 三种方法合并', fontsize=18) plt.xlabel('图像文件名', fontsize=14) plt.ylabel('预测框数量', fontsize=14) plt.xticks(rotation=90, fontsize=7) plt.grid(True, linestyle='--', alpha=0.6) plt.legend(loc='upper right') # 限制X轴刻度数量 plt.gca().xaxis.set_major_locator(MaxNLocator(20)) plt.tight_layout() plt.savefig(output_path, dpi=150, bbox_inches='tight') plt.close() # 配置路径 label_dir = "E:/0712/0712-labels" # 替换为您的标签文件夹路径 output_dir = "E:/0712/0712-stable" # 输出目录 os.makedirs(output_dir, exist_ok=True) # 获取文件列表并按自然顺序排序 file_list = [f for f in os.listdir(label_dir) if f.endswith(".txt")] file_list.sort(key=natural_sort_key) # 提取文件名(不含扩展名) file_names = [os.path.splitext(f)[0] for f in file_list] # 统计每个文件的预测框数量 box_counts = [] for file in file_list: file_path = os.path.join(label_dir, file) count = 0 with open(file_path, 'r') as f: for line in f: if line.strip(): # 非空行 count += 1 box_counts.append(count) # 归一化预测框数量(仅用于区间检测) normalized_counts = normalize_data(box_counts) # 计算整体统计数据 total_mean = np.mean(box_counts) total_std = np.std(box_counts) # 使用三种不同方法找出稳定区间(基于归一化数据) intervals_std = find_stable_intervals( normalized_counts, method='std', min_window=1000, max_window=2000, threshold=0.5, # 标准差阈值 merge_gap=300, min_length=300 ) intervals_cv = find_stable_intervals( normalized_counts, method='cv', min_window=1000, max_window=2000, threshold=0.2, # 变异系数阈值 merge_gap=300, min_length=300 ) intervals_slope = find_stable_intervals( normalized_counts, method='slope', min_window=1000, max_window=2000, threshold=0.1, # 趋势斜率阈值 merge_gap=300, min_length=300 ) # 生成三种方法的结果图片 output_std = os.path.join(output_dir, "box_count_stable_intervals_std.png") output_cv = os.path.join(output_dir, "box_count_stable_intervals_cv.png") output_slope = os.path.join(output_dir, "box_count_stable_intervals_slope.png") output_combined = os.path.join(output_dir, "box_count_stable_intervals_combined.png") # 绘制最终结果图表 plot_box_count_trend(file_names, box_counts, intervals_std, output_std, title_suffix="", method_name="标准差方法") plot_box_count_trend(file_names, box_counts, intervals_cv, output_cv, title_suffix="", method_name="变异系数方法") plot_box_count_trend(file_names, box_counts, intervals_slope, output_slope, title_suffix="", method_name="趋势斜率方法") # 生成合并图 plot_combined_intervals(file_names, box_counts, intervals_std, intervals_cv, intervals_slope, output_combined) # 输出详细结果 print(f"分析完成! 共处理 {len(file_list)} 个文件") print(f"整体平均框数: {total_mean:.2f} ± {total_std:.2f}") def print_interval_info(intervals, method_name): print(f"\n{method_name}发现 {len(intervals)} 个稳定区间:") for i, (start, end) in enumerate(intervals): interval_counts = box_counts[start:end + 1] interval_normalized = normalized_counts[start:end + 1] avg_count = np.mean(interval_counts) std_dev = np.std(interval_counts) cv = std_dev / avg_count if avg_count > 0 else 0 # 计算趋势斜率(基于原始数据) x = np.arange(len(interval_counts)) slope, _, _, _, _ = linregress(x, interval_counts) print(f"区间{i + 1}:") print(f" - 文件范围: {start + 1}-{end + 1} (共{end - start + 1}个文件)") print(f" - 平均框数: {avg_count:.2f} ± {std_dev:.2f}") print(f" - 变异系数: {cv:.4f}") print(f" - 趋势斜率: {slope:.6f}") print(f" - 最小值: {min(interval_counts)}, 最大值: {max(interval_counts)}") print_interval_info(intervals_std, "标准差方法") print_interval_info(intervals_cv, "变异系数方法") print_interval_info(intervals_slope, "趋势斜率方法") # 合并所有检测到的区间 all_intervals = intervals_std + intervals_cv + intervals_slope def merge_intervals(intervals, merge_gap=300, min_length=500): """合并重叠或接近的区间""" if not intervals: return [] # 按起始索引排序 intervals.sort(key=lambda x: x[0]) merged = [] current_start, current_end = intervals[0] for start, end in intervals[1:]: if start - current_end <= merge_gap: # 间隔小于合并阈值 current_end = max(current_end, end) # 扩展当前区间 else: merged.append((current_start, current_end)) current_start, current_end = start, end merged.append((current_start, current_end)) # 过滤短区间 final_merged = [ (start, end) for start, end in merged if (end - start + 1) >= min_length ] return final_merged # 合并所有检测到的区间 merged_intervals = merge_intervals(all_intervals, merge_gap=300, min_length=500) # 保存区间信息到文本文件 def save_interval_report(intervals, method_name, file_path): with open(file_path, 'a') as f: f.write(f"\n{method_name}稳定区间分析报告\n") f.write(f"稳定区间数: {len(intervals)}\n") for i, (start, end) in enumerate(intervals): interval_counts = box_counts[start:end + 1] interval_normalized = normalized_counts[start:end + 1] avg_count = np.mean(interval_counts) std_dev = np.std(interval_counts) cv = std_dev / avg_count if avg_count > 0 else 0 # 计算趋势斜率 x = np.arange(len(interval_counts)) slope, _, _, _, _ = linregress(x, interval_counts) f.write(f"\n区间 {i + 1}:\n") f.write(f" 起始文件索引: {start + 1} ({file_names[start]})\n") f.write(f" 结束文件索引: {end + 1} ({file_names[end]})\n") f.write(f" 文件数量: {end - start + 1}\n") f.write(f" 平均预测框数: {avg_count:.2f} ± {std_dev:.2f}\n") f.write(f" 变异系数: {cv:.4f}\n") f.write(f" 趋势斜率: {slope:.6f}\n") f.write(f" 最小值: {min(interval_counts)}, 最大值: {max(interval_counts)}\n") f.write("=" * 80 + "\n") # 创建报告文件 interval_info_path = os.path.join(output_dir, "stable_intervals_report.txt") with open(interval_info_path, 'w') as f: f.write(f"稳定区间综合分析报告\n") f.write(f"总文件数: {len(file_list)}\n") f.write(f"整体平均框数: {total_mean:.2f} ± {total_std:.2f}\n") f.write(f"归一化范围: {min(box_counts)}-{max(box_counts)}\n") # 保存三种方法的区间报告 save_interval_report(intervals_std, "标准差方法", interval_info_path) save_interval_report(intervals_cv, "变异系数方法", interval_info_path) save_interval_report(intervals_slope, "趋势斜率方法", interval_info_path) # 保存合并后的区间报告 with open(interval_info_path, 'a') as f: f.write("\n\n=== 合并区间分析报告 ===\n") f.write("此部分展示三种方法检测到的所有稳定区间合并后的结果\n") f.write(f"合并后稳定区间数: {len(merged_intervals)}\n") for i, (start, end) in enumerate(merged_intervals): interval_counts = box_counts[start:end + 1] avg_count = np.mean(interval_counts) std_dev = np.std(interval_counts) cv = std_dev / avg_count if avg_count > 0 else 0 # 计算趋势斜率 x = np.arange(len(interval_counts)) slope, _, _, _, _ = linregress(x, interval_counts) # 检测此区间被哪些方法覆盖 covered_by = [] if any(start >= s and end <= e for s, e in intervals_std): covered_by.append("标准差") if any(start >= s and end <= e for s, e in intervals_cv): covered_by.append("变异系数") if any(start >= s and end <= e for s, e in intervals_slope): covered_by.append("趋势斜率") f.write(f"\n合并区间 {i + 1}:\n") f.write(f" 起始文件索引: {start + 1} ({file_names[start]})\n") f.write(f" 结束文件索引: {end + 1} ({file_names[end]})\n") f.write(f" 文件数量: {end - start + 1}\n") f.write(f" 平均预测框数: {avg_count:.2f} ± {std_dev:.2f}\n") f.write(f" 最小值: {min(interval_counts)}, 最大值: {max(interval_counts)}\n") f.write(f" 覆盖方法: {', '.join(covered_by) if covered_by else '无'}\n") # 添加合并区间统计 total_covered_files = sum(end - start + 1 for start, end in merged_intervals) coverage_percentage = (total_covered_files / len(file_list)) * 100 f.write("\n合并区间统计:\n") f.write(f" 总覆盖文件数: {total_covered_files}/{len(file_list)} ({coverage_percentage:.2f}%)\n") f.write(f" 平均区间长度: {np.mean([end - start + 1 for start, end in merged_intervals]):.1f} 文件\n") f.write(f" 最长区间: {max([end - start + 1 for start, end in merged_intervals])} 文件\n") f.write(f" 最短区间: {min([end - start + 1 for start, end in merged_intervals])} 文件\n") print_interval_info(merged_intervals, "合并区间") print(f"\n结果图片已保存至: {output_dir}") print(f"详细区间报告已保存至: {interval_info_path}") 将代码中的归一化步骤去掉