活动介绍
file-type

DCM算法详解:中文版四轴姿态旋转矩阵与应用

PDF文件

下载需积分: 49 | 2.43MB | 更新于2024-07-19 | 86 浏览量 | 16 下载量 举报 2 收藏
download 立即下载
本文档是关于中文版的"IMU旋转矩阵",特别是四轴姿态方向余弦矩阵(DCM)在飞行控制和导航中的应用。文章以William Premerlani和Paul Bizard的《Direction Cosine Matrix (DCM) IMU: Theory》一文为基础进行翻译,目的是为了提供ArduPilot DCM库算法实现的参考,并为开发者理解和实现基于惯性测量单元(IMU)的飞行器姿态估计和导航系统提供指导。 文章首先介绍了背景,包括IMU的基本组成,如陀螺仪、加速度计和GPS,以及它们在飞行控制中的角色。陀螺仪通过测量角速度来提供姿态信息,而方向余弦矩阵用于将这些传感器的数据转换为三维空间中的坐标系旋转,以便进行精确的航向和姿态计算。 1.1节到1.16节详细解释了DCM的构造原理,涉及向量点叉乘这一关键概念,通过此方法,可以从各个轴的角度来构建旋转矩阵。陀螺仪信号处理的部分讲述了如何通过测量和滤波技术(如重规范化和漂移消除)来提取有效的姿态数据。同时,GPS和加速度计的数据也被整合进姿态估计中,以增强定位精度。 在实际应用中,DCM被用于设计反馈控制器,确保飞行器稳定并响应外部扰动,如风的影响。使用DCM控制和导航技术,可以提高飞行器的自主性和导航性能。设计实现部分可能会涵盖具体的硬件接口、算法流程和误差分析。 文章翻译自英文版,采用Markdown语法编写,并利用MathJax来呈现数学公式,便于理解和阅读。翻译工作始于2016年5月8日,预计初版完成于同年6月8日。对于想要参与翻译或维护的读者,提供了两种方式:一是通过网页端编辑,方便快捷;二是对于熟悉Git的高级用户,推荐使用本地编辑,但需注意后续的提交流程。 总结来说,本文档是一份实用的指南,涵盖了IMU旋转矩阵在无人机导航中的核心理论和实践应用,对于从事无人机开发、自动驾驶或相关领域的工程师具有很高的参考价值。

相关推荐

filetype

这是yaml文件%YAML:1.0 #common parameters #support: 1 imu 1 cam; 1 imu 2 cam: 2 cam; imu: 1 num_of_cam: 1 imu_topic: "/mavros/imu/data_raw" #"/imu0" image0_topic: "/cam0/image_raw_pod" #"/cam0/image_raw" #image1_topic: "/cam1/image_raw" output_path: "~/output/" cam0_calib: "cam0_mei.yaml" #cam1_calib: "cam1_mei.yaml" image_width: 752 image_height: 480 # Extrinsic parameter between IMU and Camera. estimate_extrinsic: 1 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. body_T_cam0: !!opencv-matrix rows: 4 cols: 4 dt: d data: [0.0148655429818, -0.999880929698, 0.00414029679422, -0.0216401454975, 0.999557249008, 0.0149672133247, 0.025715529948, -0.064676986768, -0.0257744366974, 0.00375618835797, 0.999660727178, 0.00981073058949, 0, 0, 0, 1] #Multiple thread support multiple_thread: 1 #feature traker paprameters max_cnt: 150 # max feature number in feature tracking min_dist: 30 # min distance between two features freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image F_threshold: 1.0 # ransac threshold (pixel) show_track: 1 # publish tracking image as topic flow_back: 1 # perform forward and backward optical flow to improve feature tracking accuracy #optimization parameters max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time max_num_iterations: 8 # max solver itrations, to guarantee real time keyframe_parallax: 10.0 # keyframe selection threshold (pixel) #imu parameters The more accurate parameters you provide, the better performance acc_n: 0.22 #0.1 # accelerometer measurement noise standard deviation. gyr_n: 0.031 #0.01 # gyroscope measurement noise standard deviation. acc_w: 0.0064 #0.001 # accelerometer bias random work noise standard deviation. gyr_w: 0.00054 #0.0001 # gyroscope bias random work noise standard deviation. g_norm: #9.81007 # gravity magnitude #unsynchronization parameters estimate_td: 0 # online estimate time offset between camera and imu td: 0.0 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) #loop closure parameters load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path' pose_graph_save_path: "~/output/pose_graph/" # save and load path save_image: 1 # save image in pose graph for visualization prupose; you can close this function by setting 0