活动介绍
file-type

VTK体绘制技术教程:深入理解与实践

版权申诉

ZIP文件

5星 · 超过95%的资源 | 1.2MB | 更新于2024-11-13 | 154 浏览量 | 1 下载量 举报 收藏
download 限时特惠:#14.90
VTK 是一个开源的软件系统,用于3D计算机图形学、图像处理和可视化的应用。该系统支持复杂的数据可视化流程,并包含广泛的数据处理和渲染功能。VTK体绘制涉及将体数据(如CT、MRI扫描数据)通过体渲染技术转化为直观的三维图像,以便于医生和科研人员分析和理解复杂结构或体内组织。 在使用 VTK 进行体绘制前,首先需要从网上下载 VTK 的开发包。目前,VTK 的源代码可以在其官方网站或 GitHub 仓库中找到。下载完成后,需要在本地环境中进行编译和安装,这一过程可能会消耗一定的时间,尤其是对于初学者来说。安装 VTK 后,开发人员可以通过编写代码调用 VTK 提供的库函数和类,从而在应用程序中实现体绘制的功能。 VTK 体绘制技术的核心在于其能够处理和显示大量的体数据,并以直观的方式展现。体绘制分为几种不同的技术,例如: 1. 表面绘制(Surface Rendering):通过提取数据中的等值面来显示表面特征,通常使用 Marching Cubes 算法从体数据中生成等值面。 2. 体绘制(Volume Rendering):将整个三维数据集渲染成可视化图像,无需从数据中提取等值面,可以直接展示数据内部结构。 3. 体剪裁(Volume Clipping):允许用户定义一个剪裁平面,只显示剪裁平面一侧的数据,有助于观察数据内部的某些特定部分。 VTK 库包含许多用于体绘制的类,如 vtkVolume、vtkVolumeMapper、vtkVolumeProperty 等。这些类可以用来设置数据的透明度、色彩映射、光照和阴影等参数,以增强三维图像的可视化效果。 开发者使用 VTK 进行体绘制时,通常需要具备一定的图形学和编程基础。VTK 支持多种编程语言,如 C++、Python 和 Java。在实际应用中,开发者需要根据具体需求,编写相应的代码来加载数据、配置渲染参数、处理用户交互等。 由于 VTK 提供了丰富的数据处理和可视化工具,因此在医学成像、地质勘探、科学计算可视化等多个领域得到了广泛应用。VTK 体绘制技术的出现,极大地推动了这些领域的研究和发展,使得从复杂的三维数据中提取信息变得更加高效和直观。" 【压缩包子文件的文件名称列表】中的 "vtk体绘制" 指的是包含在压缩文件中的具体资源名称,它可能是一个示例代码文件、一个文档说明或是一个项目名称,用于展示如何使用 VTK 进行体绘制。由于只提供了一个文件名称,而没有提供文件内容,所以无法详细说明该文件中包含的具体代码或文档内容。然而,可以推测该文件是用于介绍或演示 VTK 体绘制的实例或教程,旨在指导用户如何通过 VTK 库进行三维数据的体绘制。

相关推荐

filetype

import os import sys import numpy as np import pydicom import dicom_numpy import vtk from vtk.util import numpy_support from PyQt5.QtWidgets import ( QApplication, QMainWindow, QFileDialog, QVBoxLayout, QHBoxLayout, QWidget, QSlider, QLabel, QPushButton, QMessageBox, QProgressDialog ) from PyQt5.QtCore import Qt, QThread, pyqtSignal import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor def fix_qt_plugin_path(): """解决 Qt 平台插件无法初始化的问题""" try: from PyQt5.QtCore import QLibraryInfo plugin_path = QLibraryInfo.location(QLibraryInfo.PluginsPath) if os.path.exists(plugin_path): os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path return except ImportError: pass paths_to_try = [ os.path.join(sys.prefix, 'Lib', 'site-packages', 'PyQt5', 'Qt5', 'plugins'), os.path.join(sys.prefix, 'Library', 'plugins'), os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Qt', 'plugins') ] for path in paths_to_try: if os.path.exists(path): os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = path break fix_qt_plugin_path() class DICOMLoader(QThread): progress_updated = pyqtSignal(int) loading_complete = pyqtSignal(object, object, object, object) # volume_array, spacing, origin, vtk_image loading_failed = pyqtSignal(str) def __init__(self, directory): super().__init__() self.directory = directory def run(self): try: # 获取所有DICOM文件 dicom_files = self.get_all_dicom_files(self.directory) if not dicom_files: self.loading_failed.emit("未找到DICOM文件") return # 读取并分组DICOM文件 series_dict = self.read_and_group_dicom_files(dicom_files) if not series_dict: self.loading_failed.emit("没有有效的DICOM图像") return # 选择第一个系列进行处理 series_uid = next(iter(series_dict)) datasets = series_dict[series_uid] # 处理DICOM数据集 volume_array, spacing, origin = self.process_dicom_datasets(datasets) # 转换为VTK图像 vtk_image = self.numpy_to_vtk(volume_array, spacing, origin) self.loading_complete.emit(volume_array, spacing, origin, vtk_image) except Exception as e: self.loading_failed.emit(f"加载DICOM文件失败: {str(e)}") def get_all_dicom_files(self, directory): """获取目录下所有DICOM文件""" dicom_files = [] for root, _, files in os.walk(directory): for file in files: if file.lower().endswith(('.dcm', '.dicm', '.dicom')): dicom_files.append(os.path.join(root, file)) return dicom_files def read_and_group_dicom_files(self, file_paths): """读取并分组DICOM文件""" series_dict = {} for i, file_path in enumerate(file_paths): try: ds = pydicom.dcmread(file_path) # 检查是否包含像素数据 if not hasattr(ds, 'pixel_array'): continue # 检查必要的定位信息 required_tags = ['ImagePositionPatient', 'ImageOrientationPatient', 'PixelSpacing'] if not all(hasattr(ds, tag) for tag in required_tags): continue # 按系列实例UID分组 series_uid = ds.SeriesInstanceUID if series_uid not in series_dict: series_dict[series_uid] = [] series_dict[series_uid].append(ds) # 更新进度 self.progress_updated.emit(int((i + 1) / len(file_paths) * 100)) except Exception as e: print(f"无法读取文件 {file_path}: {str(e)}") continue # 对每个系列按切片位置排序 for series_uid in series_dict: try: series_dict[series_uid].sort(key=lambda ds: float(ds.ImagePositionPatient[2])) except: pass # 如果排序失败,保持原顺序 return series_dict def process_dicom_datasets(self, datasets): """处理DICOM数据集并返回体积数据""" try: # 使用dicom-numpy组合体积数据 volume_array, ijk_to_xyz = dicom_numpy.combine_slices(datasets) # 获取间距和原点 spacing = np.array([ np.linalg.norm(ijk_to_xyz[:3, 0]), # X spacing np.linalg.norm(ijk_to_xyz[:3, 1]), # Y spacing np.linalg.norm(ijk_to_xyz[:3, 2]) # Z spacing ]) origin = ijk_to_xyz[:3, 3] # 调整数组方向以匹配VTK坐标系 volume_array = np.transpose(volume_array, (2, 1, 0)) return volume_array, spacing, origin except dicom_numpy.DicomImportException as e: raise Exception(f"DICOM导入错误: {str(e)}") except Exception as e: raise Exception(f"处理DICOM数据时出错: {str(e)}") def numpy_to_vtk(self, volume_array, spacing, origin): """将numpy数组转换为VTK图像""" # 确保数组是连续的 volume_array = np.ascontiguousarray(volume_array) # 根据数据类型选择合适的VTK类型 if volume_array.dtype == np.uint8: vtk_type = vtk.VTK_UNSIGNED_CHAR elif volume_array.dtype == np.int16: vtk_type = vtk.VTK_SHORT elif volume_array.dtype == np.uint16: vtk_type = vtk.VTK_UNSIGNED_SHORT elif volume_array.dtype == np.float32: vtk_type = vtk.VTK_FLOAT else: # 不支持的格式转换为float32 volume_array = volume_array.astype(np.float32) vtk_type = vtk.VTK_FLOAT # 转换为VTK数组 vtk_data = numpy_support.numpy_to_vtk( volume_array.ravel(), deep=True, array_type=vtk_type ) # 创建VTK图像 image = vtk.vtkImageData() image.SetDimensions(volume_array.shape) image.SetSpacing(spacing) image.SetOrigin(origin) image.GetPointData().SetScalars(vtk_data) return image class MedicalViewer(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("DICOM 三维可视化工具") self.setGeometry(100, 100, 1200, 800) self.current_path_points = [] self.path_planning_mode = False self.slice_views = {} self.init_ui() def init_ui(self): central_widget = QWidget() self.setCentralWidget(central_widget) main_layout = QHBoxLayout(central_widget) # 左侧控制面板 control_panel = QWidget() control_layout = QVBoxLayout(control_panel) control_layout.setContentsMargins(5, 5, 5, 5) self.load_button = QPushButton("加载 DICOM 文件夹") self.load_button.clicked.connect(self.load_dicom) control_layout.addWidget(self.load_button) # 切片控制滑块 self.axial_slider = self.create_slice_control("轴向切片:") self.coronal_slider = self.create_slice_control("冠状切片:") self.sagittal_slider = self.create_slice_control("矢状切片:") control_layout.addWidget(self.axial_slider['container']) control_layout.addWidget(self.coronal_slider['container']) control_layout.addWidget(self.sagittal_slider['container']) # 窗宽窗位控制 self.ww_slider = self.create_window_control("窗宽:") self.wl_slider = self.create_window_control("窗位:") control_layout.addWidget(self.ww_slider['container']) control_layout.addWidget(self.wl_slider['container']) # 等值面阈值控制 self.threshold_slider = self.create_threshold_control("等值面阈值:") control_layout.addWidget(self.threshold_slider['container']) control_layout.addStretch() # 路径规划按钮 self.path_button = QPushButton("开始路径规划") self.path_button.clicked.connect(self.toggle_path_planning) self.path_button.setEnabled(False) control_layout.addWidget(self.path_button) self.clear_path_button = QPushButton("清除路径") self.clear_path_button.clicked.connect(self.clear_path) self.clear_path_button.setEnabled(False) control_layout.addWidget(self.clear_path_button) # 导出按钮 self.export_mesh_button = QPushButton("导出网格为 DAE") self.export_mesh_button.clicked.connect(self.export_mesh_to_dae) self.export_mesh_button.setEnabled(False) control_layout.addWidget(self.export_mesh_button) self.export_path_button = QPushButton("导出路径为 DAE") self.export_path_button.clicked.connect(self.export_path_to_dae) self.export_path_button.setEnabled(False) control_layout.addWidget(self.export_path_button) # 右侧显示区域 display_panel = QWidget() display_layout = QVBoxLayout(display_panel) # 2D 切片显示 self.figure, self.axes = plt.subplots(1, 3, figsize=(12, 4)) self.figure.subplots_adjust(left=0.02, right=0.98, bottom=0.02, top=0.95, wspace=0.05, hspace=0) self.canvas = FigureCanvas(self.figure) display_layout.addWidget(self.canvas) # 初始化2D视图 self.slice_views["axial"] = { "axis": self.axes[0], "slider": self.axial_slider['slider'] } self.slice_views["coronal"] = { "axis": self.axes[1], "slider": self.coronal_slider['slider'] } self.slice_views["sagittal"] = { "axis": self.axes[2], "slider": self.sagittal_slider['slider'] } # 连接信号 for view in self.slice_views.values(): view["axis"].axis("off") view["image"] = None view["slider"].valueChanged.connect(self.update_slice_views) # 3D VTK 渲染窗口 self.vtk_widget = QVTKRenderWindowInteractor() display_layout.addWidget(self.vtk_widget) main_layout.addWidget(control_panel, stretch=1) main_layout.addWidget(display_panel, stretch=4) def create_slice_control(self, label_text): """创建切片控制滑块""" container = QWidget() layout = QVBoxLayout(container) layout.setContentsMargins(0, 0, 0, 0) label = QLabel(label_text) layout.addWidget(label) slider = QSlider(Qt.Horizontal) slider.setEnabled(False) layout.addWidget(slider) return {'container': container, 'slider': slider} def create_window_control(self, label_text): """创建窗宽窗位控制滑块""" container = QWidget() layout = QVBoxLayout(container) layout.setContentsMargins(0, 0, 0, 0) label = QLabel(label_text) layout.addWidget(label) slider = QSlider(Qt.Horizontal) slider.setRange(0, 4000) slider.setValue(2000) slider.setEnabled(False) slider.valueChanged.connect(self.apply_window_level) layout.addWidget(slider) return {'container': container, 'slider': slider} def create_threshold_control(self, label_text): """创建等值面阈值控制滑块""" container = QWidget() layout = QVBoxLayout(container) layout.setContentsMargins(0, 0, 0, 0) label = QLabel(label_text) layout.addWidget(label) slider = QSlider(Qt.Horizontal) slider.setRange(-1000, 1000) slider.setValue(500) slider.setEnabled(False) slider.valueChanged.connect(self.update_3d_renderer) layout.addWidget(slider) return {'container': container, 'slider': slider} def load_dicom(self): """加载DICOM文件夹""" directory = QFileDialog.getExistingDirectory(self, "选择 DICOM 文件夹") if not directory: return # 创建进度对话框 progress_dialog = QProgressDialog("正在加载DICOM文件...", "取消", 0, 100, self) progress_dialog.setWindowTitle("加载中") progress_dialog.setWindowModality(Qt.WindowModal) progress_dialog.setAutoClose(True) # 创建并启动加载线程 self.loader = DICOMLoader(directory) self.loader.progress_updated.connect(progress_dialog.setValue) self.loader.loading_complete.connect(self.on_dicom_loaded) self.loader.loading_failed.connect(lambda msg: ( progress_dialog.cancel(), QMessageBox.critical(self, "错误", msg) )) self.loader.finished.connect(progress_dialog.deleteLater) self.loader.start() def on_dicom_loaded(self, volume_array, spacing, origin, vtk_image): """DICOM加载完成后的处理""" self.volume_array = volume_array self.vtk_image = vtk_image self.spacing = spacing self.origin = origin # 设置滑块范围 self.axial_slider['slider'].setRange(0, volume_array.shape[0] - 1) self.coronal_slider['slider'].setRange(0, volume_array.shape[1] - 1) self.sagittal_slider['slider'].setRange(0, volume_array.shape[2] - 1) # 启用滑块 self.axial_slider['slider'].setEnabled(True) self.coronal_slider['slider'].setEnabled(True) self.sagittal_slider['slider'].setEnabled(True) self.threshold_slider['slider'].setEnabled(True) # 设置初始位置 self.axial_slider['slider'].setValue(volume_array.shape[0] // 2) self.coronal_slider['slider'].setValue(volume_array.shape[1] // 2) self.sagittal_slider['slider'].setValue(volume_array.shape[2] // 2) # 启用窗宽窗位控制 self.ww_slider['slider'].setEnabled(True) self.wl_slider['slider'].setEnabled(True) # 初始化3D视图 self.setup_3d_renderer() # 更新2D视图 self.update_slice_views() # 启用其他按钮 self.path_button.setEnabled(True) self.export_mesh_button.setEnabled(True) def setup_3d_renderer(self): """初始化3D渲染器""" self.renderer = vtk.vtkRenderer() self.vtk_widget.GetRenderWindow().AddRenderer(self.renderer) self.interactor = self.vtk_widget.GetRenderWindow().GetInteractor() # 初始3D重建 self.update_3d_renderer() # 设置背景和相机 self.renderer.SetBackground(0.2, 0.3, 0.4) self.renderer.ResetCamera() # 添加光源 light1 = vtk.vtkLight() light1.SetPosition(0, 0, 1) light1.SetFocalPoint(self.renderer.GetActiveCamera().GetFocalPoint()) self.renderer.AddLight(light1) light2 = vtk.vtkLight() light2.SetPosition(0, 1, 0) light2.SetFocalPoint(self.renderer.GetActiveCamera().GetFocalPoint()) self.renderer.AddLight(light2) # 初始化交互器 self.interactor.Initialize() self.interactor.Start() def update_3d_renderer(self): """更新3D重建""" if not hasattr(self, "vtk_image"): return # 移除旧的actor if hasattr(self, "mesh_actor"): self.renderer.RemoveActor(self.mesh_actor) # 获取当前阈值 threshold = self.threshold_slider['slider'].value() # Marching Cubes表面重建 marching_cubes = vtk.vtkMarchingCubes() marching_cubes.SetInputData(self.vtk_image) marching_cubes.SetValue(0, threshold) # 平滑滤波器 smoother = vtk.vtkWindowedSincPolyDataFilter() smoother.SetInputConnection(marching_cubes.GetOutputPort()) smoother.SetNumberOfIterations(20) smoother.BoundarySmoothingOn() smoother.FeatureEdgeSmoothingOff() smoother.SetPassBand(0.1) smoother.NonManifoldSmoothingOn() smoother.NormalizeCoordinatesOn() smoother.Update() # 创建mapper和actor mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(smoother.GetOutputPort()) mapper.ScalarVisibilityOff() self.mesh_actor = vtk.vtkActor() self.mesh_actor.SetMapper(mapper) self.mesh_actor.GetProperty().SetColor(0.9, 0.75, 0.6) self.mesh_actor.GetProperty().SetOpacity(0.8) self.mesh_actor.GetProperty().SetSpecular(0.3) self.mesh_actor.GetProperty().SetSpecularPower(20) self.renderer.AddActor(self.mesh_actor) self.vtk_widget.GetRenderWindow().Render() # 保存平滑后的网格用于导出 self.smoothed_mesh = smoother.GetOutput() def update_slice_views(self): """更新所有切片视图""" if not hasattr(self, "volume_array"): return # 获取当前切片位置 axial_pos = self.axial_slider['slider'].value() coronal_pos = self.coronal_slider['slider'].value() sagittal_pos = self.sagittal_slider['slider'].value() # 更新轴向视图 axial_slice = self.volume_array[axial_pos, :, :] self.slice_views["axial"]["image"] = axial_slice self.slice_views["axial"]["axis"].clear() self.slice_views["axial"]["axis"].imshow(axial_slice.T, cmap="gray", origin="lower") self.slice_views["axial"]["axis"].set_title(f"轴向: {axial_pos}/{self.volume_array.shape[0]-1}") self.slice_views["axial"]["axis"].axis("off") # 更新冠状视图 coronal_slice = self.volume_array[:, coronal_pos, :] self.slice_views["coronal"]["image"] = coronal_slice self.slice_views["coronal"]["axis"].clear() self.slice_views["coronal"]["axis"].imshow(coronal_slice.T, cmap="gray", origin="lower") self.slice_views["coronal"]["axis"].set_title(f"冠状: {coronal_pos}/{self.volume_array.shape[1]-1}") self.slice_views["coronal"]["axis"].axis("off") # 更新矢状视图 sagittal_slice = self.volume_array[:, :, sagittal_pos] self.slice_views["sagittal"]["image"] = sagittal_slice self.slice_views["sagittal"]["axis"].clear() self.slice_views["sagittal"]["axis"].imshow(sagittal_slice.T, cmap="gray", origin="lower") self.slice_views["sagittal"]["axis"].set_title(f"矢状: {sagittal_pos}/{self.volume_array.shape[2]-1}") self.slice_views["sagittal"]["axis"].axis("off") # 应用窗宽窗位 self.apply_window_level() # 如果有路径点,在2D视图中显示 if hasattr(self, "current_path_points") and self.current_path_points: self.draw_path_on_slices() self.canvas.draw() def apply_window_level(self): """应用窗宽窗位设置""" if not hasattr(self, "volume_array"): return ww = self.ww_slider['slider'].value() wl = self.wl_slider['slider'].value() for view in self.slice_views.values(): if view["image"] is not None: for img in view["axis"].get_images(): img.set_clim(wl - ww/2, wl + ww/2) self.canvas.draw() def draw_path_on_slices(self): """在切片上绘制路径点""" if not self.current_path_points: return # 将世界坐标转换为图像坐标 for view_name, view in self.slice_views.items(): view["axis"].clear() # 重新绘制图像 if view["image"] is not None: view["axis"].imshow(view["image"].T, cmap="gray", origin="lower") view["axis"].axis("off") # 绘制路径点 for i, point in enumerate(self.current_path_points): # 转换为图像坐标 img_coord = (np.array(point) - self.origin) / self.spacing # 根据视图类型确定要显示的坐标 if view_name == "axial": x, y = img_coord[1], img_coord[2] # 注意坐标顺序 current_slice = self.axial_slider['slider'].value() if abs(img_coord[0] - current_slice) < 1.0: view["axis"].plot(x, y, "r+", markersize=10) view["axis"].text(x, y, str(i), color="red") elif view_name == "coronal": x, y = img_coord[0], img_coord[2] current_slice = self.coronal_slider['slider'].value() if abs(img_coord[1] - current_slice) < 1.0: view["axis"].plot(x, y, "r+", markersize=10) view["axis"].text(x, y, str(i), color="red") elif view_name == "sagittal": x, y = img_coord[0], img_coord[1] current_slice = self.sagittal_slider['slider'].value() if abs(img_coord[2] - current_slice) < 1.0: view["axis"].plot(x, y, "r+", markersize=10) view["axis"].text(x, y, str(i), color="red") def toggle_path_planning(self): """切换路径规划模式""" self.path_planning_mode = not self.path_planning_mode if self.path_planning_mode: self.path_button.setText("完成路径规划") self.clear_path_button.setEnabled(False) self.current_path_points = [] self.export_path_button.setEnabled(False) # 设置交互回调 self.interactor.AddObserver(vtk.vtkCommand.LeftButtonPressEvent, self.add_path_point) else: self.path_button.setText("开始路径规划") self.clear_path_button.setEnabled(len(self.current_path_points) > 0) # 移除交互回调 self.interactor.RemoveObservers(vtk.vtkCommand.LeftButtonPressEvent) if len(self.current_path_points) > 1: self.draw_3d_path() self.export_path_button.setEnabled(True) def add_path_point(self, obj, event): """添加路径点""" click_pos = self.interactor.GetEventPosition() # 使用拾取器获取3D坐标 picker = vtk.vtkCellPicker() picker.SetTolerance(0.005) picker.Pick(click_pos[0], click_pos[1], 0, self.renderer) if picker.GetCellId() != -1: world_pos = picker.GetPickPosition() self.current_path_points.append(world_pos) # 在2D视图中显示标记 self.draw_path_on_slices() self.canvas.draw() def draw_3d_path(self): """绘制3D路径""" if len(self.current_path_points) < 2: return # 如果已有路径,先移除 if hasattr(self, "path_actor"): self.renderer.RemoveActor(self.path_actor) # 创建路径线条 points = vtk.vtkPoints() lines = vtk.vtkCellArray() lines.InsertNextCell(len(self.current_path_points)) for i, point in enumerate(self.current_path_points): points.InsertNextPoint(point) lines.InsertCellPoint(i) poly_data = vtk.vtkPolyData() poly_data.SetPoints(points) poly_data.SetLines(lines) # 创建顶点(用于显示点) vertices = vtk.vtkCellArray() for i in range(len(self.current_path_points)): vert = vtk.vtkVertex() vert.GetPointIds().SetId(0, i) vertices.InsertNextCell(vert) poly_data.SetVerts(vertices) # 创建mapper和actor mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(poly_data) self.path_actor = vtk.vtkActor() self.path_actor.SetMapper(mapper) self.path_actor.GetProperty().SetColor(1, 0, 0) self.path_actor.GetProperty().SetLineWidth(3) self.path_actor.GetProperty().SetPointSize(8) self.renderer.AddActor(self.path_actor) self.vtk_widget.GetRenderWindow().Render() # 保存路径数据用于导出 self.path_data = poly_data def clear_path(self): """清除路径""" if hasattr(self, "path_actor"): self.renderer.RemoveActor(self.path_actor) del self.path_actor self.vtk_widget.GetRenderWindow().Render() self.current_path_points = [] self.clear_path_button.setEnabled(False) self.export_path_button.setEnabled(False) self.update_slice_views() def export_mesh_to_dae(self): """导出网格为DAE格式""" if not hasattr(self, "smoothed_mesh"): QMessageBox.warning(self, "警告", "没有可导出的网格") return options = QFileDialog.Options() file_path, _ = QFileDialog.getSaveFileName( self, "保存网格为 DAE 文件", "", "Collada 文件 (*.dae);;所有文件 (*)", options=options, ) if file_path: try: if not file_path.lower().endswith(".dae"): file_path += ".dae" # 创建导出器 exporter = vtk.vtkGLTFExporter() exporter.SetFileName(file_path) exporter.InlineDataOn() # 创建一个临时渲染窗口用于导出 render_window = vtk.vtkRenderWindow() renderer = vtk.vtkRenderer() render_window.AddRenderer(renderer) # 只添加网格actor renderer.AddActor(self.mesh_actor) renderer.SetBackground(0, 0, 0) exporter.SetRenderWindow(render_window) exporter.Write() QMessageBox.information(self, "成功", f"网格已保存到 {file_path}") except Exception as e: QMessageBox.critical(self, "错误", f"导出网格失败:\n{str(e)}") def export_path_to_dae(self): """导出路径为DAE格式""" if not hasattr(self, "path_data"): QMessageBox.warning(self, "警告", "没有可导出的路径") return options = QFileDialog.Options() file_path, _ = QFileDialog.getSaveFileName( self, "保存路径为 DAE 文件", "", "Collada 文件 (*.dae);;所有文件 (*)", options=options, ) if file_path: try: if not file_path.lower().endswith(".dae"): file_path += ".dae" # 创建路径的actor mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(self.path_data) path_actor = vtk.vtkActor() path_actor.SetMapper(mapper) path_actor.GetProperty().SetColor(1, 0, 0) path_actor.GetProperty().SetLineWidth(3) path_actor.GetProperty().SetPointSize(8) # 创建导出器 exporter = vtk.vtkGLTFExporter() exporter.SetFileName(file_path) exporter.InlineDataOn() # 创建一个临时渲染窗口用于导出 render_window = vtk.vtkRenderWindow() renderer = vtk.vtkRenderer() render_window.AddRenderer(renderer) renderer.AddActor(path_actor) renderer.SetBackground(0, 0, 0) exporter.SetRenderWindow(render_window) exporter.Write() QMessageBox.information(self, "成功", f"路径已保存到 {file_path}") except Exception as e: QMessageBox.critical(self, "错误", f"导出路径失败:\n{str(e)}") def main(): app = QApplication(sys.argv) if hasattr(Qt, 'AA_EnableHighDpiScaling'): QApplication.setAttribute(Qt.AA_EnableHighDpiScaling, True) if hasattr(Qt, 'AA_UseHighDpiPixmaps'): QApplication.setAttribute(Qt.AA_UseHighDpiPixmaps, True) viewer = MedicalViewer() viewer.show() sys.exit(app.exec_()) if __name__ == "__main__": if sys.platform == 'win32' and sys.executable.endswith('python.exe'): try: import subprocess subprocess.Popen([sys.executable.replace('python.exe', 'pythonw.exe')] + sys.argv) sys.exit(0) except: pass main() 该代码是通过读取DICOM文件并进行处理来实现CT图像的三维建模,但在使用过程中发现无法正确读取DICOM文件,所以我想要nii格式文件来进行图像处理实现CT图像的三维重建

邓凌佳
  • 粉丝: 95
上传资源 快速赚钱