file-type

PyTorch AG_NEWS数据集解析与应用

下载需积分: 50 | 11.19MB | 更新于2025-01-04 | 163 浏览量 | 4 下载量 举报 收藏
download 立即下载
AG新闻数据集是一个用于文本分类研究的常用数据集,主要由不同类别的新闻文章组成,这些类别包括商业、科技、娱乐和体育。该数据集常用于训练和测试自然语言处理(NLP)模型的性能,尤其在文本分类任务中。 PyTorch是一个开源的机器学习库,广泛应用于计算机视觉和NLP等领域,由Facebook的人工智能研究团队开发。PyTorch的一个重要组件是torchtext,这是一个专门用于处理文本数据的库,它提供了许多方便的功能来帮助用户加载和处理自然语言数据集,比如AG新闻数据集。 AG新闻数据集通常被分为训练集和测试集。在这个场景中,所提及的'测试数据'特指用于评估模型性能的那部分数据集。使用PyTorch框架进行模型训练时,训练集用于学习参数,而测试集则用于在训练过程结束后评估模型的泛化能力。在机器学习中,测试集应当在模型训练过程中保持不变,以确保可以公正地评估模型对未知数据的处理能力。 在处理文本数据时,通常需要先将文本转换为模型可理解的数值形式。PyTorch的torchtext库提供了许多工具来完成这一任务,包括分词器(tokenizer)、词向量(word embedding)和数据集迭代器(iterator)等。使用这些工具可以帮助我们对文本数据进行分词处理,并将每个单词映射到一个固定大小的向量上。此外,torchtext还支持构建词汇表(vocabulary)和提供数据批次(batch)等功能,从而方便地为模型训练提供数据。 具体到AG新闻数据集,它通常以CSV格式提供,每条记录包含一条新闻的标题、正文和一个分类标签。在使用PyTorch和torchtext进行数据加载时,可以通过定义特定的字段(fields)来指定如何处理数据集中的各个字段。例如,文本字段(TextField)可以用于处理新闻标题和正文,标签字段(LabelField)则用于处理分类标签。 为了在PyTorch中加载AG新闻数据集,用户可以使用torchtext提供的数据集加载工具(Dataset)和数据迭代器(Iterator)。例如,用户可以首先创建一个数据集对象,然后通过调用torchtext的函数加载CSV文件,并将数据转换为适合模型处理的格式。最后,用户可以通过迭代器在模型训练时循环遍历训练和测试数据集。 总的来说,PyTorch的AG新闻测试数据是为了让研究人员和工程师能够使用PyTorch深度学习框架和torchtext库来评估他们的NLP模型在新闻文本分类任务上的表现。通过这种方式,开发者可以对模型进行迭代和优化,最终构建出能够准确分类不同类别新闻的强大模型。"

相关推荐

filetype
496,835 条来自 AG 新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。 README: AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang ([email protected]) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). DESCRIPTION The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600. The file classes.txt contains a list of classes corresponding to each label. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
filetype
496,835 条来自 AG 新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。 README: AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang ([email protected]) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). DESCRIPTION The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600. The file classes.txt contains a list of classes corresponding to each label. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
liuche20083736
  • 粉丝: 1
上传资源 快速赚钱