file-type

Java中基于链表的二叉树算法实现源码解析

下载需积分: 22 | 1KB | 更新于2025-05-06 | 178 浏览量 | 12 下载量 举报 1 收藏
download 立即下载
根据给定的文件信息,可以提炼出以下知识点: 1. Java编程语言:代码段使用Java语言编写,Java是一种广泛使用的面向对象的编程语言,具有跨平台、面向对象、分布式的特性。 2. 链表数据结构:在代码段中没有直接体现链表数据结构的实现细节,但标题表明了使用链表来实现二叉树。链表是一种通过指针将一系列节点连接起来的线性数据结构,与数组相比,链表在插入和删除操作上具有更高的效率。 3. 二叉树概念:二叉树是一种特殊的树结构,它的每个节点最多有两个子节点,通常称它们为“左子节点”和“右子节点”。二叉树在计算机科学中有着广泛的应用,如二叉搜索树、堆排序等。 4. 二叉树节点设计:在给出的代码段中,通过`BinTreePosition`类来表示二叉树的节点。通常在实现二叉树时,每个节点会包含数据域和指针域,指针域指向其左右子节点。 5. 二叉树的操作方法:代码段中声明了多种操作二叉树的方法,主要包括获取树根、判断树是否为空、获取树的规模、获取树的高度、前序遍历、中序遍历、后序遍历和层次遍历。这些方法是二叉树算法中非常核心的操作。 - 获取树根(`getRoot`):返回二叉树的根节点。 - 判断树是否为空(`isEmpty`):通过检查根节点是否为空来判断整个树是否为空。 - 获取树的规模(`getSize`):返回二叉树中节点的总数。 - 获取树的高度(`getHeight`):返回树的高度,根节点的高度定义为0,其子树的高度是其左右子树高度的最大值加1。 - 前序遍历(`elementsPreorder`):按照“根-左-右”的顺序访问二叉树的每个节点。 - 中序遍历(`elementsInorder`):按照“左-根-右”的顺序访问二叉树的每个节点,此操作可以获取有序的节点值序列。 - 后序遍历(`elementsPostorder`):按照“左-右-根”的顺序访问二叉树的每个节点。 - 层次遍历(`elementsLevelorder`):按照从上到下,从左到右的顺序逐层访问二叉树的每个节点。 6. 实现接口:`BinTree_LinkedList`类实现了`BinTree`接口,表明该类提供了`BinTree`接口中定义的所有方法。在Java中,接口是一种引用类型,它包含了若干个方法的声明但没有实现体。 7. 软件工程实践:代码段遵循了良好的面向对象设计原则,如封装性(通过方法对内部数据进行封装)和接口编程(通过接口定义操作集合,然后由具体类实现)。此外,代码的注释采用英文,并使用了`/** ... */`这种多行注释方式,为代码的阅读和维护提供了便利。 8. 算法源码:文件标题表明这是一个算法源码示例,它不仅展示了如何用代码来描述数据结构,也提供了基本的算法实现,是学习数据结构与算法的好素材。 9. 文件命名:文件的名称与文件内容相关,标题“基于链表实现二叉树”直接反映了文件内容的主题,而“java算法源码”则进一步强调了代码的编程语言和类别。 通过这些知识点,我们可以了解到如何用Java语言通过链表实现一个二叉树,并理解它的基本操作方法。同时,这些知识点也对学习二叉树的算法和数据结构有重要的参考价值。

相关推荐

filetype
/* * 基于链表节点实现二叉树节点 */ package dsa; public class BinTreeNode implements BinTreePosition { protected Object element;//该节点中存放的对象 protected BinTreePosition parent;//父亲 protected BinTreePosition lChild;//左孩子 protected BinTreePosition rChild;//右孩子 protected int size;//后代数目 protected int height;//高度 protected int depth;//深度 /**************************** 构造方法 ****************************/ public BinTreeNode() { this(null, null, true, null, null); } public BinTreeNode( Object e,//节点内容 BinTreePosition p,//父节点 boolean asLChild,//是否作为父节点的左孩子 BinTreePosition l,//左孩子 BinTreePosition r)//右孩子 { size = 1; height = depth = 0; parent = lChild = rChild = null;//初始化 element = e;//存放的对象 //建立与父亲的关系 if (null != p) if (asLChild) p.attachL(this); else p.attachR(this); //建立与孩子的关系 if (null != l) attachL(l); if (null != r) attachR(r); } /**************************** Position接口方法 ********************************/ //返回当前节点中存放的对象 public Object getElem() { return element; } //将对象obj存入当前节点,并返回此前的内容 public Object setElem(Object obj) { Object bak = element; element = obj; return bak; } /**************************** BinTreePosition接口方法 *************************/ //判断是否有父亲(为使代码描述简洁) public boolean hasParent() { return null != parent; } //返回当前节点的父节点 public BinTreePosition getParent() { return parent; } //设置当前节点的父节点 public void setParent(BinTreePosition p) { parent = p; } //判断是否为叶子 public boolean isLeaf() { return !hasLChild() && !hasRChild(); } //判断是否为左孩子(为使代码描述简洁) //若当前节点有父亲,而且是左孩子,则返回true;否则,返回false public boolean isLChild() { return (hasParent() && this == getParent().getLChild()) ? true : false; } //判断是否有左孩子(为使代码描述简洁) public boolean hasLChild() { return null != lChild; } //返回当前节点的左孩子 public BinTreePosition getLChild() { return lChild; } //设置当前节点的左孩子(注意:this.lChild和c.parent都不一定为空) public void setLChild(BinTreePosition c) { lChild = c; } //判断是否为右孩子(为使代码描述简洁) //若当前节点有父亲,而且是右孩子,则返回true;否则,返回false public boolean isRChild() { return (hasParent() && this == getParent().getRChild()) ? true : false; } //判断是否有右孩子(为使代码描述简洁) public boolean hasRChild() { return null != rChild; } //返回当前节点的右孩子 public BinTreePosition getRChild() { return rChild; } //设置当前节点的右孩子(注意:this.rChild和c.parent都不一定为空) public void setRChild(BinTreePosition c) { rChild = c; } //返回当前节点后代元素的数目 public int getSize() { return size; } //在孩子发生变化后,更新当前节点及其祖先的规模 public void updateSize() { size = 1;//当前节点 if (hasLChild()) size += getLChild().getSize();//左子树的规模 if (hasRChild()) size += getRChild().getSize();//右子树的规模 if (hasParent()) getParent().updateSize();//递归更新各个真祖先的规模记录 } //返回当前节点的高度 public int getHeight() { return height; } //在孩子发生变化后,更新当前节点及其祖先的高度 public void updateHeight() { height = 0;//先假设没有左、右孩子 if (hasLChild()) height = Math.max(height, 1+getLChild().getHeight());//左孩子 if (hasRChild()) height = Math.max(height, 1+getRChild().getHeight());//右孩子 if (hasParent()) getParent().updateHeight();//递归更新各个真祖先的高度记录 } //返回当前节点的深度 public int getDepth() { return depth; } //在父亲发生变化后,更新当前节点及其后代的深度 public void updateDepth() { depth = hasParent() ? 1+getParent().getDepth() : 0;//当前节点 if (hasLChild()) getLChild().updateDepth();//沿孩子引用逐层向下, if (hasRChild()) getRChild().updateDepth();//递归地更新所有后代的深度记录 } //按照中序遍历的次序,找到当前节点的直接前驱 public BinTreePosition getPrev() { //若左子树非空,则其中的最大者即为当前节点的直接前驱 if (hasLChild()) return findMaxDescendant(getLChild()); //至此,当前节点没有左孩子 if (isRChild()) return getParent();//若当前节点是右孩子,则父亲即为其直接前驱 //至此,当前节点没有左孩子,而且是左孩子 BinTreePosition v = this;//从当前节点出发 while (v.isLChild()) v = v.getParent();//沿左孩子链一直上升 //至此,v或者没有父亲,或者是父亲的右孩子 return v.getParent(); } //按照中序遍历的次序,找到当前节点的直接后继 public BinTreePosition getSucc() { //若右子树非空,则其中的最小者即为当前节点的直接后继 if (hasRChild()) return findMinDescendant(getRChild()); //至此,当前节点没有右孩子 if (isLChild()) return getParent();//若当前节点是左孩子,则父亲即为其直接后继 //至此,当前节点没有右孩子,而且是右孩子 BinTreePosition v = this;//从当前节点出发 while (v.isRChild()) v = v.getParent();//沿右孩子链一直上升 //至此,v或者没有父亲,或者是父亲的左孩子 return v.getParent(); } //断绝当前节点与其父亲的父子关系 //返回当前节点 public BinTreePosition secede() { if (null != parent) { if (isLChild()) parent.setLChild(null);//切断父亲指向当前节点的引用 else parent.setRChild(null); parent.updateSize();//更新当前节点及其祖先的规模 parent.updateHeight();//更新当前节点及其祖先的高度 parent = null;//切断当前节点指向原父亲的引用 updateDepth();//更新节点及其后代节点的深度 } return this;//返回当前节点 } //将节点c作为当前节点的左孩子 public BinTreePosition attachL(BinTreePosition c) { if (hasLChild()) getLChild().secede();//摘除当前节点原先的左孩子 if (null != c) { c.secede();//c脱离原父亲 lChild = c; c.setParent(this);//确立新的父子关系 updateSize();//更新当前节点及其祖先的规模 updateHeight();//更新当前节点及其祖先的高度 c.updateDepth();//更新c及其后代节点的深度 } return this; } //将节点c作为当前节点的右孩子 public BinTreePosition attachR(BinTreePosition c) { if (hasRChild()) getRChild().secede();//摘除当前节点原先的右孩子 if (null != c) { c.secede();//c脱离原父亲 rChild = c; c.setParent(this);//确立新的父子关系 updateSize();//更新当前节点及其祖先的规模 updateHeight();//更新当前节点及其祖先的高度 c.updateDepth();//更新c及其后代节点的深度 } return this; } //前序遍历 public Iterator elementsPreorder() { List list = new List_DLNode(); preorder(list, this); return list.elements(); } //中序遍历 public Iterator elementsInorder() { List list = new List_DLNode(); inorder(list, this); return list.elements(); } //后序遍历 public Iterator elementsPostorder() { List list = new List_DLNode(); postorder(list, this); return list.elements(); } //层次遍历 public Iterator elementsLevelorder() { List list = new List_DLNode(); levelorder(list, this); return list.elements(); } /**************************** 辅助方法 ****************************/ //在v的后代中,找出最小者 protected static BinTreePosition findMinDescendant(BinTreePosition v) { if (null != v) while (v.hasLChild()) v = v.getLChild();//从v出发,沿左孩子链一直下降 //至此,v或者为空,或者没有左孩子 return v; } //在v的后代中,找出最大者 protected static BinTreePosition findMaxDescendant(BinTreePosition v) { if (null != v) while (v.hasRChild()) v = v.getRChild();//从v出发,沿右孩子链一直下降 //至此,v或者为空,或者没有右孩子 return v; } //前序遍历以v为根节的(子)树 protected static void preorder(List list, BinTreePosition v) { if (null == v) return;//递归基:空树 list.insertLast(v);//访问v preorder(list, v.getLChild());//遍历左子树 preorder(list, v.getRChild());//遍历右子树 } //中序遍历以v为根节的(子)树 protected static void inorder(List list, BinTreePosition v) { if (null == v) return;//递归基:空树 inorder(list, v.getLChild());//遍历左子树 list.insertLast(v);//访问v inorder(list, v.getRChild());//遍历右子树 } //后序遍历以v为根节的(子)树 protected static void postorder(List list, BinTreePosition v) { if (null == v) return;//递归基:空树 postorder(list, v.getLChild());//遍历左子树 postorder(list, v.getRChild());//遍历右子树 list.insertLast(v);//访问v } //层次遍历以v为根节的(子)树 protected static void levelorder(List list, BinTreePosition v) { Queue_List Q = new Queue_List();//空队 Q.enqueue(v);//根节点入队 while (!Q.isEmpty()) { BinTreePosition u = (BinTreePosition) Q.dequeue();//出队 list.insertLast(u);//访问v if (u.hasLChild()) Q.enqueue(u.getLChild()); if (u.hasRChild()) Q.enqueue(u.getRChild()); } } }