file-type

Objective C常用结构体解析:NSRange、NSPoint、NSSize与NSRect

ZIP文件

下载需积分: 50 | 19KB | 更新于2025-02-12 | 133 浏览量 | 5 下载量 举报 收藏
download 立即下载
在Objective-C编程语言中,结构体(Struct)是一种自定义的数据类型,它能够存储不同类型的数据项。结构体被广泛使用在iOS和macOS的应用开发中,以组织和处理相关数据。以下是Objective-C中最常用的四个结构体:NSRange、NSPoint/CGPoint、NSSize/CGSize和NSRect/CGRect。 1. NSRange结构体: NSRange结构体用于表示字符串或数组的范围。它包含两个成员:location和length。其中,location表示范围开始的位置,length表示范围内的元素数量。在Objective-C中,NSRange常用于处理文本、数组、集合等数据结构的子范围。 ```objective-c NSRange range = NSMakeRange(0, 5); // 表示从位置0开始,长度为5的范围 ``` 2. NSPoint/CGPoint结构体: NSPoint和CGPoint是用于二维坐标系中表示点的结构体。NSPoint是在AppKit框架(macOS应用开发)中使用的结构体,CGPoint则是在UIKit框架(iOS应用开发)中使用。它们都包含两个浮点数成员:x和y,分别表示点在水平方向和垂直方向上的坐标。 ```objective-c NSPoint point = NSMakePoint(10.0, 20.0); // AppKit中创建点 CGPoint point = CGPointMake(10.0, 20.0); // UIKit中创建点 ``` 3. NSSize/CGSize结构体: NSSize和CGSize用于表示二维空间中的尺寸或大小。同样地,NSSize是在AppKit中使用,CGSize在UIKit中使用。这两个结构体都包含两个浮点数成员:width和height,分别表示宽度和高度。 ```objective-c NSSize size = NSMakeSize(100.0, 200.0); // AppKit中创建尺寸 CGSize size = CGSizeMake(100.0, 200.0); // UIKit中创建尺寸 ``` 4. NSRect/CGRect结构体: NSRect和CGRect用于表示二维空间中的矩形区域。NSRect是在AppKit中使用的结构体,而CGRect在UIKit中使用。它们由一个点(NSPoint/CGPoint)和一个尺寸(NSSize/CGSize)构成,用于定义矩形区域的位置和大小。 ```objective-c NSRect rect = NSMakeRect(10.0, 20.0, 100.0, 200.0); // AppKit中创建矩形区域 CGRect rect = CGRectMake(10.0, 20.0, 100.0, 200.0); // UIKit中创建矩形区域 ``` 在使用这些结构体时,需要注意它们的适用范围和框架。NSRange主要应用在文本处理和数组操作上,而NSPoint、NSSize和NSRect则主要用于图形界面布局和二维图形处理。CGPoint、CGSize和CGRect是对应iOS平台的结构体,它们在命名和使用上与NS系列的结构体有细微差别,但是作用相似。 开发者在实际编程中需要熟悉这些结构体的使用,以便在处理布局、绘图以及文本数据时能够高效准确地进行操作。例如,当需要对一个图形界面元素进行移动或缩放时,通常需要计算新的CGPoint或CGRect;在处理文本编辑功能时,可能会使用NSRange来指定需要编辑或格式化的文本部分。 掌握这些基础结构体及其相关的API,能够帮助开发者更好地理解和使用Objective-C进行iOS和macOS应用的开发。

相关推荐

filetype

#include "pwm.h" #include "led.h" #include "usart.h" #include "arm_math.h" void PWM1_Init(u32 arr,u32 psc,u8 choose) { //此部分需手动修改IO口设置 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(PWM1_TIM_CLK,ENABLE); //TIM14时钟使能 RCC_AHB1PeriphClockCmd(PWM1_GPIO_CLK, ENABLE); //使能PORTF时钟 PWM1_GPIO_PIN_AF_TIM GPIO_InitStructure.GPIO_Pin = PWM1_GPIO_PIN; //GPIOF9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; //速度100MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(PWM1_GPIO_PORT,&GPIO_InitStructure); //初始化PF9 TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInit(PWM1_TIM_USE,&TIM_TimeBaseStructure);//初始化定时器14 //初始化TIM14 Channel1 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性低 switch(choose) { case 1: TIM_OC1Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC1PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; case 2: TIM_OC2Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC2PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; case 3: TIM_OC3Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC3PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; case 4: TIM_OC4Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC4PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; default: break; } TIM_ARRPreloadConfig(PWM1_TIM_USE,ENABLE);//ARPE使能 TIM_Cmd(PWM1_TIM_USE, ENABLE); //使能TIM14 } void PWM2_Init(u32 arr,u32 psc) { //此部分需手动修改IO口设置 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE); //TIM5时钟使能 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); //使能PORTF时钟 GPIO_PinAFConfig(GPIOA,GPIO_PinSource1,GPIO_AF_TIM5); //GPIOF9复用为定时器2 GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_TIM5); GPIO_PinAFConfig(GPIOA,GPIO_PinSource3,GPIO_AF_TIM5); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; //GPIOF9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; //速度100MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化PF9 TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInit(TIM5,&TIM_TimeBaseStructure);//初始化定时器2 //初始化TIM5 Channel1 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低 TIM_OC2Init(TIM5, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC2PreloadConfig(TIM5, TIM_OCPreload_Enable); //使能TIM5在CCR1上的预装载寄存器 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低 TIM_OC3Init(TIM5, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC3PreloadConfig(TIM5, TIM_OCPreload_Enable); //使能TIM5在CCR1上的预装载寄存器 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低 TIM_OC4Init(TIM5, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC4PreloadConfig(TIM5, TIM_OCPreload_Enable); //使能TIM5在CCR1上的预装载寄存器 TIM_ARRPreloadConfig(TIM5,ENABLE);//ARPE使能 TIM_Cmd(TIM5, ENABLE); //使能TIM5 } void TIM1_CH1_PWM_Init(u16 per,u16 psc) { //结构体初始化 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; //时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);//使能TIM1时钟 //IO复用 GPIO_PinAFConfig(GPIOA,GPIO_PinSource6,GPIO_AF_TIM1);//管脚复用 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//管脚复用 GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//管脚复用 //IO配置 PA6刹车 PA7主PWM 8副PWM GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_DOWN;// GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化结构体 //GPIO_ResetBits(GPIOA,GPIO_Pin_6); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化结构体 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_8;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化结构体 // 定时器配置 TIM_TimeBaseInitStructure.TIM_Period=per; //自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //设置向上计数模式 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); // 定时器比较输出通道配置 TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;//PWM1模式 TIM_OCInitStructure.TIM_Pulse=0;//设置占空比 //主通道 TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;//输出通道电平极性设置 TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;//输出使能 TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Reset;//输出通道空闲电平极性配置 //互补通道 TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_High;//互补输出通道电平极性设置 TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Enable;//互补输出使能 TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//互补输出通道空闲电平极性配置 TIM_OC1Init(TIM1,&TIM_OCInitStructure); //输出比较通道1初始化 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); //使能TIMx在 CCR1 上的预装载寄存器 // 刹车死区配置 TIM_BDTRInitStructure.TIM_AutomaticOutput=TIM_AutomaticOutput_Enable;// 自动输出功能使能 TIM_BDTRInitStructure.TIM_Break=TIM_Break_Disable;//刹车输入 TIM_BDTRInitStructure.TIM_BreakPolarity=TIM_BreakPolarity_High; //刹车输入管脚极性高 TIM_BDTRInitStructure.TIM_DeadTime=168; //输出打开和关闭状态之间的延时 84-1us 168-2us TIM_BDTRInitStructure.TIM_LOCKLevel=TIM_LOCKLevel_OFF;// 锁电平参数: 不锁任何位 TIM_BDTRInitStructure.TIM_OSSIState=TIM_OSSIState_Disable; //设置在运行模式下非工作状态选项 TIM_BDTRInitStructure.TIM_OSSRState=TIM_OSSRState_Disable; //设置在运行模式下非工作状态选项 TIM_BDTRConfig(TIM1,&TIM_BDTRInitStructure); TIM_ARRPreloadConfig(TIM1,ENABLE);//使能预装载寄存器 TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1,ENABLE); //主输出使能 } void TIM1_CenterMode_PWM_Init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_11 | GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOE, &GPIO_InitStructure); // GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; // GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; // GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; // GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; // GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOE, GPIO_PinSource9, GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE, GPIO_PinSource13, GPIO_AF_TIM1); // GPIO_PinAFConfig(GPIOB, GPIO_PinSource8, GPIO_AF_TIM10); TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_TimeBaseInitStructure.TIM_Period = 8400 - 1; //20kHz TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1; TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseInitStructure); // TIM_TimeBaseInitStructure.TIM_Period = 8400 - 1; //20kHz // TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1; // TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; // TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; // TIM_TimeBaseInit(TIM10, &TIM_TimeBaseInitStructure); TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC1Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC2Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC3Init(TIM1,&TIM_OCInitStructure); // TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; // TIM_OCInitStructure.TIM_Pulse = 0; // TIM_OC1Init(TIM10,&TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable); TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable); // TIM_OC1PreloadConfig(TIM10, TIM_OCPreload_Enable); // TIM_BDTRInitTypeDef TIM_BDTRInitStructure; // TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; // TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; // TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF; // TIM_BDTRInitStructure.TIM_DeadTime = 17; // TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable; // TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable; // TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); TIM_Cmd(TIM1,ENABLE); TIM_CtrlPWMOutputs(TIM1, ENABLE); // TIM_Cmd(TIM10,ENABLE); // TIM_CtrlPWMOutputs(TIM10, ENABLE); } 上面写的完整互补通道配置代码请在这里面进行修改

filetype

void TIM_DeInit(TIM_TypeDef* TIMx); void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct); void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct); void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct); void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct); void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct); void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct); void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct); void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState); void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource); void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength); void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState); void TIM_InternalClockConfig(TIM_TypeDef* TIMx); void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource); void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource, uint16_t TIM_ICPolarity, uint16_t ICFilter); void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode); void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode); void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource); void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode, uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity); void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity); void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity); void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity); void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx); void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN); void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode); void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource); void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode); void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource); void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode); void TIM_SetCounter(TIM_TypeDef* TIMx, uint16_t Counter); void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint16_t Autoreload); void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1); void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2); void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3); void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4); void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD); uint16_t TIM_GetCapture1(TIM_TypeDef* TIMx); uint16_t TIM_GetCapture2(TIM_TypeDef* TIMx); uint16_t TIM_GetCapture3(TIM_TypeDef* TIMx); uint16_t TIM_GetCapture4(TIM_TypeDef* TIMx); uint16_t TIM_GetCounter(TIM_TypeDef* TIMx); uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx); FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG); void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG); ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT); void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT); 详细解释一下每个函数的作用

kexuwang
  • 粉丝: 5
上传资源 快速赚钱