file-type

嵌入式系统中的CC-NUMA多处理器技术研究

232KB | 更新于2024-08-30 | 81 浏览量 | 7 下载量 举报 收藏
download 立即下载
"嵌入式系统/ARM技术中的基于CC—NUMA的多处理器系统研究" 在嵌入式系统和ARM技术领域,多处理器系统设计是提升性能和处理能力的关键。其中,基于CC—NUMA(一致性缓存非均匀存储访问)的架构是一种平衡性能与扩展性的解决方案。本文主要探讨了三种常见的多处理器系统模式:SMP(对称多处理)、NUMA(非均匀存储访问)和MPP(大规模并行处理)。 SMP模式是最为传统的多处理器架构,它将多个相同的处理器连接至共享主存,所有处理器都能同时访问同一物理内存,运行统一的操作系统。SMP的结构简单,但共享内存可能导致访问瓶颈,限制了系统的可扩展性。相比之下,MPP模式采用分布式存储,每个处理器有自己的内存,通过网络连接进行通信,具有良好的可扩展性,但需要复杂的并行编程和编译,增加了软件开发的难度。 NUMA架构则介于两者之间,它将多个计算单元通过专用的互连设备连接,形成一个分布式且共享的内存空间。每个处理器既可以访问本地内存,也能访问其他处理器或共享内存,但由于访问距离不同,导致了访问时延的不均匀,即非均匀存储访问。为解决这一问题,CC—NUMA引入了高速缓存一致性机制,减少了远程内存访问,从而提高了系统效率。这种架构既保留了SMP的单一操作系统和简单编程模型,又具备MPP的高扩展性和I/O能力。 CC—NUMA的基本架构包括多个节点,每个节点通常包含一个或多个处理器和本地内存,节点间通过高速互连网络进行通信。处理器访问本地内存速度快,访问远程内存速度慢,因此在编程时需要考虑数据局部性原则,尽可能让处理器访问与其关联的数据,以减少延迟。同时,为了保持缓存一致性,CC—NUMA系统需要一套复杂的协议来同步各节点的缓存状态。 例如,Silicon Graphics Incorporated (SGI)公司的Altix系统就是CC—NUMA架构的一个典型实例,它能够支持大量处理器和大容量内存,提供高性能计算能力,适用于高性能计算和大数据处理任务。 CC—NUMA在嵌入式系统和ARM技术中的应用,为复杂计算任务提供了更高效的平台,它能够适应不同规模的系统需求,同时降低了编程的复杂性。然而,设计和优化CC—NUMA系统仍然需要深入理解处理器、内存和网络交互的细节,以及如何有效地利用缓存一致性机制,以确保系统的高效运行。

相关推荐

filetype

2025-03-24 21:05:22.389424: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2025-03-24 21:05:22.420815: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2025-03-24 21:05:22.886007: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT 2025-03-24 21:05:23.406027: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2025-03-24 21:05:23.426276: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2025-03-24 21:05:23.426409: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2025-03-24 21:05:23.427366: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.

weixin_38603875
  • 粉丝: 6
上传资源 快速赚钱