file-type

Pytorch图像增强技巧及应用实例解析

ZIP文件

下载需积分: 9 | 742KB | 更新于2025-01-11 | 75 浏览量 | 0 下载量 举报 收藏
download 立即下载
在深度学习和计算机视觉领域,图像增强是一种广泛使用的技术,它通过应用各种转换来增加训练数据集的大小和多样性,以提高模型的泛化能力。本文主要介绍在Pytorch框架下进行图像增强的方法。 一、图像增强的必要性 在训练深度学习模型时,尤其是卷积神经网络(CNNs)等图像识别模型,数据的质量和数量都对模型的表现有着决定性的影响。拥有大量高质量的标记数据能够帮助模型更好地学习和概括数据集的特征,提高其在未知数据上的表现,这被称为模型的泛化能力。 然而,数据的收集和标记往往耗时且成本高昂。在某些情况下,如医疗图像分析,特定条件下的图像可能难以获取,而手工标记这些图像则需要专业知识和大量的时间。因此,图像增强技术应运而生,它能够通过计算机生成新的、多样化的图像,从而减少对大量真实数据的依赖。 二、图像增强的定义 图像增强是指使用算法对原始图像进行一系列的转换,这些转换包括旋转、缩放、裁剪、颜色调整等操作,以生成新的图像变体。这些操作可以是随机的,也可以遵循一定的规则,目的是增加数据集的多样性,同时尽可能保留原始图像中的重要信息。 三、Pytorch中的图像增强 Pytorch是一个开源的机器学习库,它提供了丰富的工具来构建和训练深度神经网络。Pytorch的 torchvision 库中包含了许多用于图像处理和增强的模块,如 transforms。这些模块可以组合成变换管道,用于对图像数据进行预处理,包括增强。 在本文中,将使用Pytorch和torchvision来演示一些基本的图像增强技巧。以下是Pytorch中常用的一些图像增强方法: 1. 随机水平翻转(RandomHorizontalFlip) 2. 随机垂直翻转(RandomVerticalFlip) 3. 随机旋转(RandomRotation) 4. 随机裁剪(RandomResizedCrop) 5. 颜色抖动(ColorJitter) 6. 标准化(Normalize) 这些变换可以单独使用,也可以组合使用,以生成更加多样化的训练图像。例如,可以通过组合旋转、缩放和颜色调整操作来模拟不同的拍摄条件或相机角度。 四、技术应用案例 本文描述了一个案例,在该案例中,作者仅使用了38个阳性图像来训练一个更快的R-CNN模型,并通过增强技术在计算机辅助诊断领域中达到了最好的性能。这证明了图像增强技术能够显著地提高模型在数据稀缺环境下的性能。 五、实践指南 要实现图像增强,首先需要安装Pytorch和torchvision库。之后,可以创建一个数据转换管道,并将其应用于数据集的加载器。在Jupyter Notebook等交互式编程环境中,可以方便地进行数据增强的操作演示和结果的实时查看。 六、结束语 图像增强是一种实用的技术,它能够显著提高深度学习模型的性能,尤其是在数据量有限的情况下。通过理解并掌握Pytorch中的图像增强技术,研究人员和工程师可以更有效地训练其模型,从而在各种计算机视觉任务中实现更好的性能。 以上内容均基于给定文件信息中的标题、描述、标签以及压缩包子文件的文件名称列表,旨在提供一个关于Pytorch中图像增强技术的详细说明和实践指南。

相关推荐

filetype

# Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training task: detect # (str) YOLO task, i.e. detect, segment, classify, pose mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco128.yaml epochs: 200 # (int) number of epochs to train for patience: 300 # (int) epochs to wait for no observable improvement for early stopping of training batch: 2 # (int) number of images per batch (-1 for AutoBatch) imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: True # (bool) True/ram, disk or False. Use cache for data loading device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 0 # (int) number of worker threads for data loading (per RANK if DDP) project: # (str, optional) project name name: # (str, optional) experiment name, results saved to 'project/name' directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr: False # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 4 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.7 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots during train/val # Prediction settings -------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos show: False # (bool) show results if possible save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show object labels in plots show_conf: True # (bool) show object confidence scores in plots vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) line_width: # (int, optional) line width of the bounding boxes, auto if missing visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: False # (bool) use high-resolution segmentation masks boxes: True # (bool) Show boxes in segmentation predictions # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: False # (bool) ONNX: simplify model opset: # (int, optional) ONNX: opset version workspace: 4 # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.01 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.0 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.1 # (float) image translation (+/- fraction) scale: 0.5 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # (float) image flip up-down (probability) fliplr: 0.5 # (float) image flip left-right (probability) mosaic: 1.0 # (float) image mosaic (probability) mixup: 0.0 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] 这段代码什么意思

沈临白
  • 粉丝: 61
上传资源 快速赚钱