dorm_face_recognition_gui.py代码如下:
import pickle
import sys
import os
import cv2
import numpy as np
import torch
from PyQt5.QtWidgets import QListWidget, QProgressDialog
from facenet_pytorch import MTCNN, InceptionResnetV1
from PIL import Image
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
QPushButton, QLabel, QFileDialog, QComboBox, QSlider, QMessageBox,
QTextEdit, QGroupBox, QScrollArea, QDialog, QDialogButtonBox,
QTableWidget, QTableWidgetItem, QHeaderView, QGridLayout)
from PyQt5.QtCore import Qt, QTimer
from PyQt5.QtGui import QImage, QPixmap, QIcon, QFont, QColor
import joblib
import logging
import json
from datetime import datetime
在 dorm_face_recognition_gui.py 顶部添加导入
from face_recognition import FaceRecognition
配置日志
logging.basicConfig(level=logging.INFO, format=‘%(asctime)s - %(levelname)s - %(message)s’)
logger = logging.getLogger(name)
class FeedbackDialog(QDialog):
“”“反馈对话框”“”
def __init__(self, parent=None, last_results=None, dorm_members=None): super().__init__(parent) self.setWindowTitle("识别错误反馈") self.setFixedSize(500, 400) self.last_results = last_results or [] self.dorm_members = dorm_members or [] self.init_ui() def init_ui(self): layout = QVBoxLayout(self) # 添加当前识别结果 result_label = QLabel("当前识别结果:") layout.addWidget(result_label) # 使用表格显示结果 self.results_table = QTableWidget() self.results_table.setColumnCount(4) self.results_table.setHorizontalHeaderLabels(["ID", "识别结果", "置信度", "位置和大小"]) self.results_table.setSelectionBehavior(QTableWidget.SelectRows) self.results_table.setEditTriggers(QTableWidget.NoEditTriggers) # 填充表格数据 self.results_table.setRowCount(len(self.last_results)) for i, result in enumerate(self.last_results): x, y, w, h = result["box"] self.results_table.setItem(i, 0, QTableWidgetItem(str(i + 1))) self.results_table.setItem(i, 1, QTableWidgetItem(result["label"])) self.results_table.setItem(i, 2, QTableWidgetItem(f"{result['confidence']:.2f}")) self.results_table.setItem(i, 3, QTableWidgetItem(f"({x}, {y}) - {w}x{h}")) # 设置表格样式 self.results_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.results_table.verticalHeader().setVisible(False) layout.addWidget(self.results_table) # 添加正确身份选择 correct_layout = QGridLayout() correct_label = QLabel("正确身份:") correct_layout.addWidget(correct_label, 0, 0) self.correct_combo = QComboBox() self.correct_combo.addItem("选择正确身份", None) for member in self.dorm_members: self.correct_combo.addItem(member, member) self.correct_combo.addItem("陌生人", "stranger") self.correct_combo.addItem("不在列表中", "unknown") correct_layout.addWidget(self.correct_combo, 0, 1) # 添加备注 note_label = QLabel("备注:") correct_layout.addWidget(note_label, 1, 0) self.note_text = QTextEdit() self.note_text.setPlaceholderText("可添加额外说明...") self.note_text.setMaximumHeight(60) correct_layout.addWidget(self.note_text, 1, 1) layout.addLayout(correct_layout) # 添加按钮 button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(self.accept) button_box.rejected.connect(self.reject) layout.addWidget(button_box) def get_selected_result(self): """获取选择的识别结果""" selected_row = self.results_table.currentRow() if selected_row >= 0 and selected_row < len(self.last_results): return self.last_results[selected_row] return None def get_feedback_data(self): """获取反馈数据""" selected_result = self.get_selected_result() if not selected_result: return None return { "timestamp": datetime.now().isoformat(), "original_label": selected_result["label"], "correct_label": self.correct_combo.currentData(), "confidence": selected_result["confidence"], "box": selected_result["box"], # 保存完整的框信息 "note": self.note_text.toPlainText().strip() }
class FaceRecognitionSystem(QMainWindow):
def init(self):
super().init()
self.setWindowTitle(“寝室人脸识别系统”)
self.setGeometry(100, 100, 1200, 800)
# 初始化变量 self.model_loaded = False self.camera_active = False self.video_capture = None self.timer = QTimer() self.current_image = None self.last_results = [] # 存储上次识别结果 self.dorm_members = [] # 寝室成员列表 # 创建主界面 self.main_widget = QWidget() self.setCentralWidget(self.main_widget) self.layout = QHBoxLayout(self.main_widget) # 左侧控制面板 - 占40%宽度 self.control_panel = QWidget() self.control_layout = QVBoxLayout(self.control_panel) self.control_layout.setAlignment(Qt.AlignTop) self.control_panel.setMaximumWidth(400) self.layout.addWidget(self.control_panel, 40) # 40%宽度 # 右侧图像显示区域 - 占60%宽度 self.image_panel = QWidget() self.image_layout = QVBoxLayout(self.image_panel) self.image_label = QLabel() self.image_label.setAlignment(Qt.AlignCenter) self.image_label.setMinimumSize(800, 600) self.image_label.setStyleSheet("background-color: #333; border: 1px solid #555;") self.image_layout.addWidget(self.image_label) self.layout.addWidget(self.image_panel, 60) # 60%宽度 # 状态栏 self.status_bar = self.statusBar() self.status_bar.showMessage("系统初始化中...") # 初始化人脸识别器 - 关键修复 self.face_recognition = FaceRecognition() # 初始化UI组件 self.init_ui() # 添加工具栏(必须在UI初始化后) self.toolbar = self.addToolBar('工具栏') # 添加反馈按钮 self.add_feedback_button() # 初始化模型 self.init_models() def init_ui(self): """初始化用户界面组件""" # 标题 title_label = QLabel("寝室人脸识别系统") title_label.setFont(QFont("Arial", 18, QFont.Bold)) title_label.setAlignment(Qt.AlignCenter) title_label.setStyleSheet("color: #2c3e50; padding: 10px;") self.control_layout.addWidget(title_label) # 模型加载 model_group = QGroupBox("模型设置") model_layout = QVBoxLayout(model_group) self.load_model_btn = QPushButton("加载模型") self.load_model_btn.setIcon(QIcon.fromTheme("document-open")) self.load_model_btn.setStyleSheet("background-color: #3498db;") self.load_model_btn.clicked.connect(self.load_model) model_layout.addWidget(self.load_model_btn) self.model_status = QLabel("模型状态: 未加载") model_layout.addWidget(self.model_status) self.control_layout.addWidget(model_group) # 在模型设置部分添加重新训练按钮 self.retrain_btn = QPushButton("重新训练模型") self.retrain_btn.setIcon(QIcon.fromTheme("view-refresh")) self.retrain_btn.setStyleSheet("background-color: #f39c12;") self.retrain_btn.clicked.connect(self.retrain_model) self.retrain_btn.setEnabled(False) # 初始不可用 model_layout.addWidget(self.retrain_btn) # 识别设置 settings_group = QGroupBox("识别设置") settings_layout = QVBoxLayout(settings_group) # 置信度阈值 threshold_layout = QHBoxLayout() threshold_label = QLabel("置信度阈值:") threshold_layout.addWidget(threshold_label) self.threshold_slider = QSlider(Qt.Horizontal) self.threshold_slider.setRange(0, 100) self.threshold_slider.setValue(70) self.threshold_slider.valueChanged.connect(self.update_threshold) threshold_layout.addWidget(self.threshold_slider) self.threshold_value = QLabel("0.70") threshold_layout.addWidget(self.threshold_value) settings_layout.addLayout(threshold_layout) # 显示选项 display_layout = QHBoxLayout() display_label = QLabel("显示模式:") display_layout.addWidget(display_label) self.display_combo = QComboBox() self.display_combo.addItems(["原始图像", "检测框", "识别结果"]) self.display_combo.setCurrentIndex(2) display_layout.addWidget(self.display_combo) settings_layout.addLayout(display_layout) self.control_layout.addWidget(settings_group) # 识别功能 recognition_group = QGroupBox("识别功能") recognition_layout = QVBoxLayout(recognition_group) # 图片识别 self.image_recognition_btn = QPushButton("图片识别") self.image_recognition_btn.setIcon(QIcon.fromTheme("image-x-generic")) self.image_recognition_btn.setStyleSheet("background-color: #9b59b6;") self.image_recognition_btn.clicked.connect(self.open_image) self.image_recognition_btn.setEnabled(False) recognition_layout.addWidget(self.image_recognition_btn) # 摄像头识别 self.camera_recognition_btn = QPushButton("启动摄像头识别") self.camera_recognition_btn.setIcon(QIcon.fromTheme("camera-web")) self.camera_recognition_btn.setStyleSheet("background-color: #e74c3c;") self.camera_recognition_btn.clicked.connect(self.toggle_camera) self.camera_recognition_btn.setEnabled(False) recognition_layout.addWidget(self.camera_recognition_btn) self.control_layout.addWidget(recognition_group) # 结果展示区域 - 使用QTextEdit替代QLabel results_group = QGroupBox("识别结果") results_layout = QVBoxLayout(results_group) self.results_text = QTextEdit() self.results_text.setReadOnly(True) self.results_text.setFont(QFont("Microsoft YaHei", 12)) # 使用支持中文的字体 self.results_text.setStyleSheet("background-color: #f8f9fa; border: 1px solid #ddd; padding: 10px;") self.results_text.setPlaceholderText("识别结果将显示在这里") # 添加滚动区域 scroll_area = QScrollArea() scroll_area.setWidgetResizable(True) scroll_area.setWidget(self.results_text) results_layout.addWidget(scroll_area) self.control_layout.addWidget(results_group, 1) # 占据剩余空间 # 系统信息 info_group = QGroupBox("系统信息") info_layout = QVBoxLayout(info_group) self.device_label = QLabel(f"计算设备: {'GPU' if torch.cuda.is_available() else 'CPU'}") info_layout.addWidget(self.device_label) self.model_info = QLabel("加载模型以显示信息") info_layout.addWidget(self.model_info) self.control_layout.addWidget(info_group) # 退出按钮 exit_btn = QPushButton("退出系统") exit_btn.setIcon(QIcon.fromTheme("application-exit")) exit_btn.clicked.connect(self.close) exit_btn.setStyleSheet("background-color: #ff6b6b; color: white;") self.control_layout.addWidget(exit_btn) def add_feedback_button(self): """添加反馈按钮到界面""" # 创建反馈按钮 self.feedback_button = QPushButton("提供反馈", self) self.feedback_button.setFixedSize(120, 40) # 设置固定大小 self.feedback_button.setStyleSheet( "QPushButton {" " background-color: #4CAF50;" " color: white;" " border-radius: 5px;" " font-weight: bold;" "}" "QPushButton:hover {" " background-color: #45a049;" "}" ) # 连接按钮点击事件 self.feedback_button.clicked.connect(self.open_feedback_dialog) # 添加到工具栏 self.toolbar.addWidget(self.feedback_button) def open_feedback_dialog(self): """打开反馈对话框""" if not self.last_results: QMessageBox.warning(self, "无法反馈", "没有可反馈的识别结果") return dialog = FeedbackDialog( self, last_results=self.last_results, dorm_members=self.dorm_members ) if dialog.exec_() == QDialog.Accepted: feedback_data = dialog.get_feedback_data() if feedback_data: # 修复:调用 FaceRecognition 实例的 save_feedback 方法 selected_result = dialog.get_selected_result() if selected_result: # 获取检测框 detected_box = [ selected_result["box"][0], selected_result["box"][1], selected_result["box"][0] + selected_result["box"][2], selected_result["box"][1] + selected_result["box"][3] ] # 调用保存反馈方法 self.face_recognition.save_feedback( self.current_image, detected_box, feedback_data["original_label"], feedback_data["correct_label"] ) QMessageBox.information(self, "反馈提交", "感谢您的反馈!数据已保存用于改进模型") else: QMessageBox.warning(self, "反馈错误", "未选择要反馈的人脸结果") def init_models(self): """初始化模型组件""" # 设置设备 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.device_label.setText(f"计算设备: {'GPU' if torch.cuda.is_available() else 'CPU'}") # 初始化人脸检测器 try: self.detector = MTCNN( keep_all=True, post_process=False, device=self.device ) self.status_bar.showMessage("MTCNN 检测器初始化完成") logger.info("MTCNN 检测器初始化完成") except Exception as e: self.status_bar.showMessage(f"MTCNN 初始化失败: {str(e)}") logger.error(f"MTCNN 初始化失败: {str(e)}") return # 初始化人脸特征提取器 try: self.embedder = InceptionResnetV1( pretrained='vggface2', classify=False, device=self.device ).eval() self.status_bar.showMessage("FaceNet 特征提取器初始化完成") logger.info("FaceNet 特征提取器初始化完成") except Exception as e: self.status_bar.showMessage(f"FaceNet 初始化失败: {str(e)}") logger.error(f"FaceNet 初始化失败: {str(e)}") def load_model(self): """加载预训练的SVM分类器""" options = QFileDialog.Options() file_path, _ = QFileDialog.getOpenFileName( self, "选择模型文件", "", "模型文件 (*.pkl);;所有文件 (*)", options=options ) if file_path: try: # 加载模型 model_data = joblib.load(file_path) self.classifier = model_data['classifier'] self.label_encoder = model_data['label_encoder'] self.dorm_members = model_data['dorm_members'] # 启用重新训练按钮 self.retrain_btn.setEnabled(True) # 更新UI状态 self.model_loaded = True self.model_status.setText("模型状态: 已加载") self.model_info.setText(f"寝室成员: {', '.join(self.dorm_members)}") self.image_recognition_btn.setEnabled(True) self.camera_recognition_btn.setEnabled(True) # 状态栏消息 self.status_bar.showMessage(f"模型加载成功: {os.path.basename(file_path)}") # 显示成功消息 QMessageBox.information( self, "模型加载", f"模型加载成功!\n识别成员: {len(self.dorm_members)}人\n置信度阈值: {self.threshold_slider.value() / 100:.2f}" ) except Exception as e: QMessageBox.critical(self, "加载错误", f"模型加载失败: {str(e)}") self.status_bar.showMessage(f"模型加载失败: {str(e)}") def update_threshold(self, value): """更新置信度阈值""" threshold = value / 100 self.threshold_value.setText(f"{threshold:.2f}") self.status_bar.showMessage(f"置信度阈值更新为: {threshold:.2f}") def open_image(self): """打开图片文件进行识别""" if not self.model_loaded: QMessageBox.warning(self, "警告", "请先加载模型!") return options = QFileDialog.Options() file_path, _ = QFileDialog.getOpenFileName( self, "选择识别图片", "", "图片文件 (*.jpg *.jpeg *.png);;所有文件 (*)", options=options ) if file_path: # 读取图片 image = cv2.imread(file_path) if image is None: QMessageBox.critical(self, "错误", "无法读取图片文件!") return # 保存当前图片 self.current_image = image.copy() # 进行识别 self.recognize_faces(image) def toggle_camera(self): """切换摄像头状态""" if not self.model_loaded: QMessageBox.warning(self, "警告", "请先加载模型!") return if not self.camera_active: # 尝试打开摄像头 self.video_capture = cv2.VideoCapture(0) if not self.video_capture.isOpened(): QMessageBox.critical(self, "错误", "无法打开摄像头!") return # 启动摄像头 self.camera_active = True self.camera_recognition_btn.setText("停止摄像头识别") self.camera_recognition_btn.setIcon(QIcon.fromTheme("media-playback-stop")) self.timer.timeout.connect(self.process_camera_frame) self.timer.start(30) # 约33 FPS self.status_bar.showMessage("摄像头已启动") else: # 停止摄像头 self.camera_active = False self.camera_recognition_btn.setText("启动摄像头识别") self.camera_recognition_btn.setIcon(QIcon.fromTheme("camera-web")) self.timer.stop() if self.video_capture: self.video_capture.release() self.status_bar.showMessage("摄像头已停止") def process_camera_frame(self): """处理摄像头帧""" ret, frame = self.video_capture.read() if ret: # 保存当前帧 self.current_image = frame.copy() # 进行识别 self.recognize_faces(frame) def retrain_model(self): """使用反馈数据重新训练模型""" # 获取所有反馈数据 feedback_dir = os.path.join(os.getcwd(), "data", "feedback_data") # 修复1:支持多种文件扩展名 feedback_files = [] for f in os.listdir(feedback_dir): filepath = os.path.join(feedback_dir, f) if os.path.isfile(filepath) and (f.endswith('.pkl') or f.endswith('.json')): feedback_files.append(f) # 修复2:添加目录存在性检查 if not os.path.exists(feedback_dir): QMessageBox.warning(self, "目录不存在", f"反馈数据目录不存在: {feedback_dir}") return if not feedback_files: QMessageBox.information(self, "无反馈数据", "没有找到反馈数据,无法重新训练") return # 确认对话框 reply = QMessageBox.question( self, '确认重新训练', f"将使用 {len(feedback_files)} 条反馈数据重新训练模型。此操作可能需要几分钟时间,确定继续吗?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No ) if reply != QMessageBox.Yes: return try: # 创建进度对话框 progress = QProgressDialog("正在重新训练模型...", "取消", 0, len(feedback_files), self) progress.setWindowTitle("模型重新训练") progress.setWindowModality(Qt.WindowModal) progress.setMinimumDuration(0) progress.setValue(0) # 收集所有反馈数据 feedback_data = [] for i, filename in enumerate(feedback_files): filepath = os.path.join(feedback_dir, filename) # 修复3:根据文件扩展名使用不同的加载方式 if filename.endswith('.pkl'): with open(filepath, 'rb') as f: # 二进制模式读取 data = pickle.load(f) elif filename.endswith('.json'): with open(filepath, 'r', encoding='utf-8') as f: data = json.load(f) else: continue # 跳过不支持的文件类型 feedback_data.append(data) progress.setValue(i + 1) QApplication.processEvents() # 保持UI响应 if progress.wasCanceled(): return progress.setValue(len(feedback_files)) # 重新训练模型 self.status_bar.showMessage("正在重新训练模型...") # 修复4:添加详细的日志记录 logger.info(f"开始重新训练,使用 {len(feedback_data)} 条反馈数据") # 调用重新训练方法 success = self.face_recognition.retrain_with_feedback(feedback_data) if success: # 更新UI状态 self.model_status.setText("模型状态: 已重新训练") self.dorm_members = self.face_recognition.dorm_members self.model_info.setText(f"寝室成员: {', '.join(self.dorm_members)}") # 保存更新后的模型 model_path = os.path.join("models", "updated_model.pkl") self.face_recognition.save_updated_model(model_path) QMessageBox.information(self, "训练完成", "模型已成功使用反馈数据重新训练!") else: QMessageBox.warning(self, "训练失败", "重新训练过程中出现问题") except Exception as e: logger.error(f"重新训练失败: {str(e)}") QMessageBox.critical(self, "训练错误", f"重新训练模型时出错: {str(e)}") def recognize_faces(self, image): """识别人脸并在图像上标注结果""" # 清空上次结果 self.last_results = [] # 转换为 PIL 图像 pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # 检测人脸 boxes, probs, _ = self.detector.detect(pil_image, landmarks=True) # 获取显示选项 display_mode = self.display_combo.currentIndex() # 准备显示图像 display_image = image.copy() # 如果没有检测到人脸 if boxes is None: if display_mode == 2: # 识别结果模式 cv2.putText(display_image, "未检测到人脸", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) self.results_text.setText("未检测到人脸") else: # 提取每个人脸 faces = [] for box in boxes: x1, y1, x2, y2 = box face = pil_image.crop((x1, y1, x2, y2)) faces.append(face) # 提取特征 embeddings = [] if faces and self.model_loaded: # 批量处理所有人脸 face_tensors = [self.preprocess_face(face) for face in faces] if face_tensors: face_tensors = torch.stack(face_tensors).to(self.device) with torch.no_grad(): embeddings = self.embedder(face_tensors).cpu().numpy() # 处理每个人脸 for i, (box, prob) in enumerate(zip(boxes, probs)): x1, y1, x2, y2 = box w, h = x2 - x1, y2 - y1 # 在图像上绘制结果 if display_mode == 0: # 原始图像 # 不绘制任何内容 pass elif display_mode == 1: # 检测框 # 绘制人脸框 cv2.rectangle(display_image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) elif display_mode == 2: # 识别结果 # 绘制人脸框 color = (0, 255, 0) # 绿色 # 如果有嵌入向量,则进行识别 if i < len(embeddings): # 预测 probabilities = self.classifier.predict_proba([embeddings[i]])[0] max_prob = np.max(probabilities) pred_class = self.classifier.predict([embeddings[i]])[0] pred_label = self.label_encoder.inverse_transform([pred_class])[0] # 获取置信度阈值 threshold = self.threshold_slider.value() / 100 # 判断是否为陌生人 if max_prob < threshold or pred_label == 'stranger': label = "陌生人" color = (0, 0, 255) # 红色 else: label = pred_label color = (0, 255, 0) # 绿色 # 保存结果用于文本显示 - 修复:保存完整的框信息 result = { "box": [int(x1), int(y1), int(x2 - x1), int(y2 - y1)], # [x, y, width, height] "label": label, "confidence": max_prob } self.last_results.append(result) # 绘制标签 cv2.rectangle(display_image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) cv2.putText(display_image, f"{label} ({max_prob:.2f})", (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2) else: # 无法识别的处理 cv2.rectangle(display_image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 165, 255), 2) cv2.putText(display_image, "处理中...", (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 165, 255), 2) # 更新结果文本 self.update_results_text() # 在图像上显示FPS(摄像头模式下) if self.camera_active: fps = self.timer.interval() if fps > 0: cv2.putText(display_image, f"FPS: {1000 / fps:.1f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) # 显示图像 self.display_image(display_image) def update_results_text(self): """更新结果文本区域""" if not self.last_results: self.results_text.setText("未识别到任何人脸") return # 构建结果文本 result_text = "识别结果:
" for i, result in enumerate(self.last_results, 1): x, y, w, h = result["box"] label = result["label"] confidence = result["confidence"] # 处理中文显示问题 if label in self.dorm_members: result_text += ( f"
人脸 #{i}: " f"寝室成员 - {label}
" f"位置: ({x}, {y}), 大小: {w}x{h}, 置信度: {confidence:.2f}
" ) else: result_text += ( f"人脸 #{i}: " f"陌生人
" f"位置: ({x}, {y}), 大小: {w}x{h}, 置信度: {confidence:.2f}
" ) self.results_text.setHtml(result_text) def preprocess_face(self, face_img): """预处理人脸图像""" # 调整大小 face_img = face_img.resize((160, 160)) # 转换为张量并归一化 face_img = np.array(face_img).astype(np.float32) / 255.0 face_img = (face_img - 0.5) / 0.5 # 归一化到[-1, 1] face_img = torch.tensor(face_img).permute(2, 0, 1) # HWC to CHW return face_img def display_image(self, image): """在QLabel中显示图像""" # 将OpenCV图像转换为Qt格式 height, width, channel = image.shape bytes_per_line = 3 * width q_img = QImage(image.data, width, height, bytes_per_line, QImage.Format_RGB888).rgbSwapped() # 缩放图像以适应标签 pixmap = QPixmap.fromImage(q_img) self.image_label.setPixmap(pixmap.scaled( self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio, Qt.SmoothTransformation )) def closeEvent(self, event): """关闭事件处理""" if self.camera_active: self.timer.stop() if self.video_capture: self.video_capture.release() # 确认退出 reply = QMessageBox.question( self, '确认退出', "确定要退出系统吗?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No ) if reply == QMessageBox.Yes: event.accept() else: event.ignore()
if name == “main”:
app = QApplication(sys.argv)
# 设置全局异常处理 def handle_exception(exc_type, exc_value, exc_traceback): """全局异常处理""" import traceback error_msg = "".join(traceback.format_exception(exc_type, exc_value, exc_traceback)) print(f"未捕获的异常:\n{error_msg}") # 记录到文件 with open("error.log", "a") as f: f.write(f"\n\n{datetime.now()}:\n{error_msg}") # 显示给用户 QMessageBox.critical(None, "系统错误", f"发生未处理的异常:\n{str(exc_value)}") sys.exit(1) sys.excepthook = handle_exception window = FaceRecognitionSystem() window.show() sys.exit(app.exec_())
face_model.py代码如下:import os
os.environ[‘TF_CPP_MIN_LOG_LEVEL’] = ‘3’ # 禁用 TensorFlow 日志(如果仍有依赖)
import cv2
import numpy as np
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from sklearn.svm import SVC
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import joblib
import logging
import sys
import glob
from facenet_pytorch import MTCNN, InceptionResnetV1
from PIL import Image
import gc
配置日志
logging.basicConfig(level=logging.INFO, format=‘%(asctime)s - %(levelname)s - %(message)s’)
logger = logging.getLogger(name)
def check_gpu_environment():
“”“检查 GPU 环境”“”
print(“=” * 60)
print(“GPU 环境检查”)
print(“=” * 60)
# 检查 CUDA 是否可用 print(f"PyTorch 版本: {torch.__version__}") print(f"CUDA 可用: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU 数量: {torch.cuda.device_count()}") for i in range(torch.cuda.device_count()): print(f"GPU {i}: {torch.cuda.get_device_name(i)}") print(f" 显存总量: {torch.cuda.get_device_properties(i).total_memory / 1024 ** 3:.2f} GB") print("=" * 60)
class FaceDataset(Dataset):
“”“人脸数据集类”“”
def __init__(self, data_dir, min_samples=10, transform=None): self.data_dir = data_dir self.transform = transform self.faces = [] self.labels = [] self.label_map = {} self.dorm_members = [] self._load_dataset(min_samples) def _load_dataset(self, min_samples): """加载数据集""" # 遍历每个成员文件夹 for member_dir in os.listdir(self.data_dir): member_path = os.path.join(self.data_dir, member_dir) if not os.path.isdir(member_path): continue # 记录寝室成员 self.dorm_members.append(member_dir) self.label_map[member_dir] = len(self.label_map) # 遍历成员的所有照片 member_faces = [] for img_file in os.listdir(member_path): img_path = os.path.join(member_path, img_file) try: # 使用 PIL 加载图像 img = Image.open(img_path).convert('RGB') member_faces.append(img) except Exception as e: logger.warning(f"无法加载图像 {img_path}: {str(e)}") # 确保每个成员有足够样本 if len(member_faces) < min_samples: logger.warning(f"{member_dir} 只有 {len(member_faces)} 个有效样本,至少需要 {min_samples} 个") continue # 添加成员数据 self.faces.extend(member_faces) self.labels.extend([self.label_map[member_dir]] * len(member_faces)) # 添加陌生人样本 stranger_faces = self._generate_stranger_samples(len(self.faces) // 4) self.faces.extend(stranger_faces) self.labels.extend([len(self.label_map)] * len(stranger_faces)) self.label_map['stranger'] = len(self.label_map) logger.info(f"数据集加载完成: {len(self.faces)} 个样本, {len(self.dorm_members)} 个成员") def _generate_stranger_samples(self, num_samples): """生成陌生人样本""" stranger_faces = [] # 使用公开数据集的人脸作为陌生人 # 这里使用 LFW 数据集作为示例(实际项目中应使用真实数据) for _ in range(num_samples): # 生成随机噪声图像(实际应用中应使用真实陌生人照片) random_face = Image.fromarray(np.uint8(np.random.rand(160, 160, 3) * 255)) stranger_faces.append(random_face) return stranger_faces def __len__(self): return len(self.faces) def __getitem__(self, idx): face = self.faces[idx] label = self.labels[idx] if self.transform: face = self.transform(face) return face, label
class DormFaceRecognizer:
“”“寝室人脸识别系统 (PyTorch 实现)”“”
def __init__(self, threshold=0.7, device=None): # 设置设备 self.device = device or ('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f"使用设备: {self.device}") # 初始化人脸检测器 self.detector = MTCNN( keep_all=True, post_process=False, device=self.device ) logger.info("MTCNN 检测器初始化完成") # 初始化人脸特征提取器 self.embedder = InceptionResnetV1( pretrained='vggface2', classify=False, device=self.device ).eval() # 设置为评估模式 logger.info("FaceNet 特征提取器初始化完成") # 初始化其他组件 self.classifier = None self.label_encoder = None self.threshold = threshold self.dorm_members = [] # 数据预处理 self.transform = transforms.Compose([ transforms.Resize((160, 160)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) def create_dataset(self, data_dir, min_samples=10, batch_size=32, num_workers=4): """创建数据集""" dataset = FaceDataset( data_dir, min_samples=min_samples, transform=self.transform ) # 保存成员信息 self.dorm_members = dataset.dorm_members self.label_encoder = LabelEncoder().fit( list(dataset.label_map.keys()) + ['stranger'] ) # 创建数据加载器 dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True ) return dataset, dataloader def extract_features(self, dataloader): """提取人脸特征向量""" embeddings = [] labels = [] logger.info("开始提取特征...") start_time = time.time() with torch.no_grad(): for batch_idx, (faces, batch_labels) in enumerate(dataloader): # 移动到设备 faces = faces.to(self.device) # 提取特征 batch_embeddings = self.embedder(faces) # 保存结果 embeddings.append(batch_embeddings.cpu().numpy()) labels.append(batch_labels.numpy()) # 每10个批次打印一次进度 if (batch_idx + 1) % 10 == 0: elapsed = time.time() - start_time logger.info(f"已处理 {batch_idx + 1}/{len(dataloader)} 批次, 耗时: {elapsed:.2f}秒") # 合并结果 embeddings = np.vstack(embeddings) labels = np.hstack(labels) logger.info(f"特征提取完成: {embeddings.shape[0]} 个样本, 耗时: {time.time() - start_time:.2f}秒") return embeddings, labels def train_classifier(self, embeddings, labels): """训练 SVM 分类器""" logger.info("开始训练分类器...") start_time = time.time() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split( embeddings, labels, test_size=0.2, random_state=42 ) # 创建并训练 SVM 分类器 self.classifier = SVC(kernel='linear', probability=True, C=1.0) self.classifier.fit(X_train, y_train) # 评估模型 y_pred = self.classifier.predict(X_test) accuracy = accuracy_score(y_test, y_pred) logger.info(f"分类器训练完成, 准确率: {accuracy:.4f}, 耗时: {time.time() - start_time:.2f}秒") return accuracy def recognize_face(self, image): """识别单张图像中的人脸""" # 转换为 PIL 图像 if isinstance(image, np.ndarray): image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # 检测人脸 boxes, probs, landmarks = self.detector.detect(image, landmarks=True) recognitions = [] if boxes is not None: # 提取每个人脸 faces = [] for box in boxes: x1, y1, x2, y2 = box face = image.crop((x1, y1, x2, y2)) faces.append(face) # 预处理人脸 face_tensors = torch.stack([self.transform(face) for face in faces]).to(self.device) # 提取特征 with torch.no_grad(): embeddings = self.embedder(face_tensors).cpu().numpy() # 预测 probabilities = self.classifier.predict_proba(embeddings) pred_classes = self.classifier.predict(embeddings) for i, (box, prob) in enumerate(zip(boxes, probs)): max_prob = np.max(probabilities[i]) pred_label = self.label_encoder.inverse_transform([pred_classes[i]])[0] # 判断是否为陌生人 if max_prob < self.threshold or pred_label == 'stranger': recognitions.append(("陌生人", max_prob, box)) else: recognitions.append((pred_label, max_prob, box)) return recognitions def save_model(self, file_path): """保存模型""" model_data = { 'classifier': self.classifier, 'label_encoder': self.label_encoder, 'threshold': self.threshold, 'dorm_members': self.dorm_members } joblib.dump(model_data, file_path) logger.info(f"模型已保存至: {file_path}") def load_model(self, file_path): """加载模型""" model_data = joblib.load(file_path) self.classifier = model_data['classifier'] self.label_encoder = model_data['label_encoder'] self.threshold = model_data['threshold'] self.dorm_members = model_data['dorm_members'] logger.info(f"模型已加载,寝室成员: {', '.join(self.dorm_members)}")
def main():
“”“主函数”“”
print(f"[{time.strftime(‘%H:%M:%S’)}] 程序启动")
# 检查 GPU 环境 check_gpu_environment() # 检查并创建必要的目录 os.makedirs('data/dorm_faces', exist_ok=True) # 初始化识别器 try: recognizer = DormFaceRecognizer(threshold=0.6) logger.info("人脸识别器初始化成功") except Exception as e: logger.error(f"初始化失败: {str(e)}") print("程序将在10秒后退出...") time.sleep(10) return # 数据集路径 data_dir = "data/dorm_faces" # 检查数据集是否存在 if not os.path.exists(data_dir) or not os.listdir(data_dir): logger.warning(f"数据集目录 '{data_dir}' 不存在或为空") print("请创建以下结构的目录:") print("dorm_faces/") print("├── 成员1/") print("│ ├── 照片1.jpg") print("│ ├── 照片2.jpg") print("│ └── ...") print("├── 成员2/") print("│ └── ...") print("└── ...") print("\n程序将在10秒后退出...") time.sleep(10) return # 步骤1: 创建数据集 try: dataset, dataloader = recognizer.create_dataset( data_dir, min_samples=10, batch_size=64, num_workers=4 ) except Exception as e: logger.error(f"数据集创建失败: {str(e)}") return # 步骤2: 提取特征 try: embeddings, labels = recognizer.extract_features(dataloader) except Exception as e: logger.error(f"特征提取失败: {str(e)}") return # 步骤3: 训练分类器 try: accuracy = recognizer.train_classifier(embeddings, labels) except Exception as e: logger.error(f"分类器训练失败: {str(e)}") return # 保存模型 model_path = "models/dorm_face_model_pytorch.pkl" try: recognizer.save_model(model_path) except Exception as e: logger.error(f"模型保存失败: {str(e)}") # 测试识别 test_image_path = "test_photo.jpg" if not os.path.exists(test_image_path): logger.warning(f"测试图片 '{test_image_path}' 不存在,跳过识别测试") else: logger.info(f"正在测试识别: {test_image_path}") try: test_image = cv2.imread(test_image_path) if test_image is None: logger.error(f"无法读取图片: {test_image_path}") else: recognitions = recognizer.recognize_face(test_image) if not recognitions: logger.info("未检测到人脸") else: # 在图像上绘制结果 for name, confidence, box in recognitions: x1, y1, x2, y2 = box label = f"{name} ({confidence:.2f})" color = (0, 255, 0) if name != "陌生人" else (0, 0, 255) # 绘制矩形框 cv2.rectangle(test_image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # 绘制标签 cv2.putText(test_image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # 显示结果 cv2.imshow("人脸识别结果", test_image) cv2.waitKey(0) cv2.destroyAllWindows() # 保存结果图像 result_path = "recognition_result_pytorch.jpg" cv2.imwrite(result_path, test_image) logger.info(f"识别结果已保存至: {result_path}") except Exception as e: logger.error(f"人脸识别失败: {str(e)}") logger.info("程序执行完成")
if name == “main”:
main()
face_recognition.py代码如下:import json
import cv2
import numpy as np
import torch
import insightface
from insightface.app import FaceAnalysis
from facenet_pytorch import InceptionResnetV1
from PIL import Image
import joblib
import os
import pickle
from datetime import datetime
import random
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
from torch.utils.data import Dataset, DataLoader
class FaceRecognition:
def init(self, device=None):
self.device = device or torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)
self.model_loaded = False
self.training_data = {} # 初始化 training_data 属性
self.dorm_members = [] # 初始化 dorm_members 属性
self.label_encoder = LabelEncoder() # 初始化标签编码器
self.init_models()
def init_models(self): """初始化人脸识别模型""" try: # 初始化ArcFace模型 - 使用正确的方法 self.arcface_model = FaceAnalysis(providers=['CPUExecutionProvider']) self.arcface_model.prepare(ctx_id=0, det_size=(640, 640)) # 初始化FaceNet模型作为备选 self.facenet_model = InceptionResnetV1( pretrained='vggface2', classify=False, device=self.device ).eval() # 状态标记 self.models_initialized = True print("模型初始化完成") except Exception as e: print(f"模型初始化失败: {str(e)}") self.models_initialized = False def load_classifier(self, model_path): """加载分类器模型""" try: model_data = joblib.load(model_path) self.classifier = model_data['classifier'] self.label_encoder = model_data['label_encoder'] self.dorm_members = model_data['dorm_members'] # 确保加载training_data self.training_data = model_data.get('training_data', {}) self.model_loaded = True print(f"分类器加载成功,成员: {', '.join(self.dorm_members)}") print(f"训练数据包含 {len(self.training_data)} 个类别") return True except Exception as e: print(f"分类器加载失败: {str(e)}") self.model_loaded = False return False def extract_features(self, face_img): """使用ArcFace提取人脸特征""" try: if face_img.size == 0: print("错误:空的人脸图像") return None # 将图像从BGR转换为RGB rgb_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB) faces = self.arcface_model.get(rgb_img) if faces: return faces[0].embedding print("未检测到人脸特征") return None except Exception as e: print(f"特征提取失败: {str(e)}") return None def extract_features_facenet(self, face_img): """使用FaceNet提取人脸特征(备选)""" try: # 转换为PIL图像并预处理 face_pil = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)) face_tensor = self.preprocess_face(face_pil).to(self.device) with torch.no_grad(): features = self.facenet_model(face_tensor.unsqueeze(0)).cpu().numpy()[0] return features except Exception as e: print(f"FaceNet特征提取失败: {str(e)}") return None def preprocess_face(self, face_img): """预处理人脸图像""" # 调整大小 face_img = face_img.resize((160, 160)) # 转换为张量并归一化 face_img = np.array(face_img).astype(np.float32) / 255.0 face_img = (face_img - 0.5) / 0.5 # 归一化到[-1, 1] face_img = torch.tensor(face_img).permute(2, 0, 1) # HWC to CHW return face_img def retrain_with_feedback(self, feedback_data): """使用反馈数据重新训练模型""" # 检查是否有原始训练数据 if not self.training_data: print("错误:没有可用的原始训练数据") return False # 收集原始训练数据 original_features = [] original_labels = [] # 收集特征和标签 for member, embeddings in self.training_data.items(): for emb in embeddings: original_features.append(emb) original_labels.append(member) # 收集反馈数据 feedback_features = [] feedback_labels = [] for feedback in feedback_data: # 获取正确标签 correct_label = feedback.get("correct_label") if not correct_label or correct_label == "unknown": continue # 获取原始图像和人脸位置 image_path = feedback.get("image_path", "") if not image_path or not os.path.exists(image_path): print(f"图像路径无效: {image_path}") continue box = feedback.get("box", []) if len(box) != 4: print(f"无效的人脸框: {box}") continue # 处理图像 image = cv2.imread(image_path) if image is None: print(f"无法读取图像: {image_path}") continue # 裁剪人脸区域 x1, y1, x2, y2 = map(int, box) face_img = image[y1:y2, x1:x2] if face_img.size == 0: print(f"裁剪后的人脸图像为空: {image_path}") continue # 提取特征 embedding = self.extract_features(face_img) if embedding is None: print(f"无法提取特征: {image_path}") continue # 添加到训练数据 feedback_features.append(embedding) feedback_labels.append(correct_label) print(f"添加反馈数据: {correct_label} - {image_path}") # 检查是否有有效的反馈数据 if not feedback_features: print("错误:没有有效的反馈数据") return False # 合并数据 all_features = np.vstack([original_features, feedback_features]) all_labels = original_labels + feedback_labels # 重新训练分类器 self.classifier = SVC(kernel='linear', probability=True) self.classifier.fit(all_features, all_labels) # 更新标签编码器 self.label_encoder = LabelEncoder() self.label_encoder.fit(all_labels) # 更新寝室成员列表 self.dorm_members = list(self.label_encoder.classes_) # 更新训练数据 self.training_data = {} for label, feature in zip(all_labels, all_features): if label not in self.training_data: self.training_data[label] = [] self.training_data[label].append(feature) print(f"重新训练完成! 新模型包含 {len(self.dorm_members)} 个成员") return True def recognize(self, image, threshold=0.7): """识别人脸""" if not self.model_loaded or not self.models_initialized: return [], image.copy() # 使用ArcFace检测人脸 rgb_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) faces = self.arcface_model.get(rgb_img) results = [] display_img = image.copy() if faces: for face in faces: # 获取人脸框 x1, y1, x2, y2 = face.bbox.astype(int) # 提取特征 embedding = face.embedding # 预测 probabilities = self.classifier.predict_proba([embedding])[0] max_prob = np.max(probabilities) pred_class = self.classifier.predict([embedding])[0] pred_label = self.label_encoder.inverse_transform([pred_class])[0] # 判断是否为陌生人 if max_prob < threshold or pred_label == 'stranger': label = "陌生人" color = (0, 0, 255) # 红色 else: label = pred_label color = (0, 255, 0) # 绿色 # 保存结果 results.append({ "box": [x1, y1, x2, y2], "label": label, "confidence": max_prob }) # 在图像上绘制结果 cv2.rectangle(display_img, (x1, y1), (x2, y2), color, 2) cv2.putText(display_img, f"{label} ({max_prob:.2f})", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2) return results, display_img def save_feedback(self, image, detected_box, incorrect_label, correct_label): """保存用户反馈数据 - 改进为保存图像路径而非完整图像""" feedback_dir = "data/feedback_data" os.makedirs(feedback_dir, exist_ok=True) # 创建唯一文件名 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # 保存人脸图像 face_img_dir = os.path.join(feedback_dir, "faces") os.makedirs(face_img_dir, exist_ok=True) face_img_path = os.path.join(face_img_dir, f"face_{timestamp}.jpg") # 裁剪并保存人脸区域 x1, y1, x2, y2 = map(int, detected_box) # 修复1:确保裁剪区域有效 if y2 > y1 and x2 > x1: face_img = image[y1:y2, x1:x2] if face_img.size > 0: cv2.imwrite(face_img_path, face_img) else: logger.warning(f"裁剪的人脸区域无效: {detected_box}") face_img_path = None else: logger.warning(f"无效的检测框: {detected_box}") face_img_path = None # 保存反馈元数据 filename = f"feedback_{timestamp}.json" # 修复2:使用JSON格式 filepath = os.path.join(feedback_dir, filename) # 准备数据 feedback_data = { "image_path": face_img_path, # 保存路径而非完整图像 "detected_box": detected_box, "incorrect_label": incorrect_label, "correct_label": correct_label, "timestamp": timestamp } # 修复3:使用JSON保存便于阅读和调试 with open(filepath, 'w', encoding='utf-8') as f: json.dump(feedback_data, f, ensure_ascii=False, indent=2) return True def save_updated_model(self, output_path): """保存更新后的模型""" model_data = { 'classifier': self.classifier, 'label_encoder': self.label_encoder, 'dorm_members': self.dorm_members, 'training_data': self.training_data # 包含训练数据 } joblib.dump(model_data, output_path) print(f"更新后的模型已保存到: {output_path}")
class TripletFaceDataset(Dataset):
“”“三元组人脸数据集”“”
def __init__(self, embeddings, labels): self.embeddings = embeddings self.labels = labels self.label_to_indices = {} # 创建标签到索引的映射 for idx, label in enumerate(labels): if label not in self.label_to_indices: self.label_to_indices[label] = [] self.label_to_indices[label].append(idx) def __getitem__(self, index): anchor_label = self.labels[index] # 随机选择正样本 positive_idx = index while positive_idx == index: positive_idx = random.choice(self.label_to_indices[anchor_label]) # 随机选择负样本 negative_label = random.choice([l for l in set(self.labels) if l != anchor_label]) negative_idx = random.choice(self.label_to_indices[negative_label]) return ( self.embeddings[index], self.embeddings[positive_idx], self.embeddings[negative_idx] ) def __len__(self): return len(self.embeddings)
class TripletLoss(nn.Module):
“”“三元组损失函数”“”
def __init__(self, margin=1.0): super(TripletLoss, self).__init__() self.margin = margin def forward(self, anchor, positive, negative): distance_positive = (anchor - positive).pow(2).sum(1) distance_negative = (anchor - negative).pow(2).sum(1) losses = torch.relu(distance_positive - distance_negative + self.margin) return losses.mean()
def train_triplet_model(embeddings, labels, epochs=100):
“”“训练三元组模型”“”
dataset = TripletFaceDataset(embeddings, labels)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
model = nn.Sequential( nn.Linear(embeddings.shape[1], 256), nn.ReLU(), nn.Linear(256, 128) ) criterion = TripletLoss(margin=0.5) optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(epochs): total_loss = 0.0 for anchor, positive, negative in dataloader: optimizer.zero_grad() anchor_embed = model(anchor) positive_embed = model(positive) negative_embed = model(negative) loss = criterion(anchor_embed, positive_embed, negative_embed) loss.backward() optimizer.step() total_loss += loss.item() print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}") return model
main.py代码如下:import sys
from dorm_face_recognition_gui import FaceRecognitionSystem
from PyQt5.QtWidgets import QApplication
if name == “main”:
# 设置中文编码支持
if sys.platform == “win32”:
import ctypes
ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(“dorm.face.recognition”)
app = QApplication(sys.argv) app.setStyle("Fusion") # 使用Fusion风格 # 设置应用样式 app.setStyleSheet(""" QMainWindow { background-color: #ecf0f1; } QGroupBox { border: 1px solid #bdc3c7; border-radius: 8px; margin-top: 20px; padding: 10px; font-weight: bold; background-color: #ffffff; } QGroupBox::title { subcontrol-origin: margin; subcontrol-position: top center; padding: 0 5px; } QPushButton { background-color: #3498db; color: white; border: none; padding: 10px 15px; font-size: 14px; margin: 5px; border-radius: 5px; } QPushButton:hover { background-color: #2980b9; } QPushButton:pressed { background-color: #1c6ea4; } QPushButton:disabled { background-color: #bdc3c7; } QLabel { font-size: 14px; padding: 3px; } QComboBox, QSlider { padding: 4px; background-color: #ffffff; } QTextEdit { font-family: "Microsoft YaHei"; font-size: 12px; } """) window = FaceRecognitionSystem() window.show() sys.exit(app.exec_()) ui.py代码如下:from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton, QLabel, QFileDialog, QComboBox, QSlider, QMessageBox, QTextEdit, QGroupBox, QScrollArea, QDialog, QListWidget)
from PyQt5.QtCore import Qt, QTimer
from PyQt5.QtGui import QImage, QPixmap, QIcon, QFont
from face_recognition import FaceRecognition
class FaceRecognitionSystem(QMainWindow):
def init(self):
super().init()
# … 原有初始化代码 …
# 初始化人脸识别器 self.face_recognition = FaceRecognition() # 添加反馈按钮 self.add_feedback_button() def add_feedback_button(self): """添加反馈按钮到界面""" self.feedback_btn = QPushButton("反馈识别错误") self.feedback_btn.setIcon(QIcon.fromTheme("dialog-warning")) self.feedback_btn.setStyleSheet("background-color: #f39c12;") self.feedback_btn.clicked.connect(self.handle_feedback) # 找到识别功能组并添加按钮 for i in range(self.control_layout.count()): widget = self.control_layout.itemAt(i).widget() if isinstance(widget, QGroupBox) and widget.title() == "识别功能": layout = widget.layout() layout.addWidget(self.feedback_btn) break def handle_feedback(self): """处理用户反馈""" if not hasattr(self, 'last_results') or not self.last_results: QMessageBox.warning(self, "警告", "没有可反馈的识别结果") return # 创建反馈对话框 dialog = QDialog(self) dialog.setWindowTitle("识别错误反馈") dialog.setFixedSize(400, 300) layout = QVBoxLayout(dialog) # 添加当前识别结果 result_label = QLabel("当前识别结果:") layout.addWidget(result_label) self.feedback_list = QListWidget() for i, result in enumerate(self.last_results, 1): label = result["label"] confidence = result["confidence"] self.feedback_list.addItem(f"人脸 #{i}: {label} (置信度: {confidence:.2f})") layout.addWidget(self.feedback_list) # 添加正确身份选择 correct_label = QLabel("正确身份:") layout.addWidget(correct_label) self.correct_combo = QComboBox() self.correct_combo.addItems(["选择正确身份"] + self.face_recognition.dorm_members + ["陌生人", "不在列表中"]) layout.addWidget(self.correct_combo) # 添加按钮 btn_layout = QHBoxLayout() submit_btn = QPushButton("提交反馈") submit_btn.clicked.connect(lambda: self.submit_feedback(dialog)) btn_layout.addWidget(submit_btn) cancel_btn = QPushButton("取消") cancel_btn.clicked.connect(dialog.reject) btn_layout.addWidget(cancel_btn) layout.addLayout(btn_layout) dialog.exec_() def submit_feedback(self, dialog): """提交反馈并更新模型""" selected_index = self.feedback_list.currentRow() if selected_index < 0: QMessageBox.warning(self, "警告", "请选择一个识别结果") return result = self.last_results[selected_index] correct_identity = self.correct_combo.currentText() if correct_identity == "选择正确身份": QMessageBox.warning(self, "警告", "请选择正确身份") return # 保存反馈数据 self.face_recognition.save_feedback( self.current_image.copy(), result["box"], result["label"], correct_identity ) QMessageBox.information(self, "反馈提交", "感谢您的反馈!数据已保存用于改进模型") dialog.accept() def recognize_faces(self, image): """识别人脸并在图像上标注结果""" # 使用人脸识别器进行识别 self.last_results, display_image = self.face_recognition.recognize( image, threshold=self.threshold_slider.value() / 100 ) # 更新结果文本 self.update_results_text() # 显示图像 self.display_image(display_image) def update_results_text(self): """更新结果文本区域""" if not self.last_results: self.results_text.setText("未识别到任何人脸") return # 构建结果文本 result_text = "<h3>识别结果:</h3>" for i, result in enumerate(self.last_results, 1): x1, y1, x2, y2 = result["box"] label = result["label"] confidence = result["confidence"] # 处理中文显示问题 if label in self.face_recognition.dorm_members: result_text += ( f"人脸 #{i}: " f"寝室成员 - {label}
" f"位置: ({x1}, {y1}), 置信度: {confidence:.2f}
" ) else: result_text += ( f"人脸 #{i}: " f"陌生人
" f"位置: ({x1}, {y1}), 置信度: {confidence:.2f}
" ) self.results_text.setHtml(result_text) # ... 其余原有方法 ...
需要把重新训练模型部分和反馈部分全部删除