file-type

C4.5算法源码及测试数据包解析

RAR文件

5星 · 超过95%的资源 | 下载需积分: 9 | 478KB | 更新于2025-06-22 | 123 浏览量 | 64 下载量 举报 1 收藏
download 立即下载
C4.5是一种广泛知名的决策树学习算法,它属于数据挖掘算法的范畴。C4.5算法是由J. Ross Quinlan在1993年在《C4.5: Programs for Machine Learning》一书中提出的。C4.5算法是对之前版本的ID3算法的改进和发展,它可以用于分类问题,也即根据一组给定的输入实例的特征,自动构建一个能够对新的实例进行分类的决策树模型。 C4.5算法核心内容可以分为以下几个知识点: 1. 决策树:决策树是一种树形结构,每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,而每个叶节点代表一种分类。C4.5算法构建决策树的过程实质上是选择最佳分割属性对数据进行分割并递归地进行分割,直到满足一定的终止条件。 2. 信息增益和增益率:信息增益是衡量一个属性分割数据集前后不纯度减少程度的标准。信息增益越大,意味着使用该属性对数据集进行分割能够得到越多的信息。C4.5算法通过计算信息增益来进行决策树的构建。然而,ID3算法在选择分割属性时倾向于取值较多的属性,这可能导致过拟合。因此,C4.5引入了增益率这一概念来对信息增益进行优化,以此减少对取值多的属性的偏好。 3. 剪枝处理:剪枝是C4.5算法中一个重要的步骤,其目的是为了降低决策树的复杂度,避免过拟合。剪枝分为预剪枝和后剪枝两种,预剪枝在决策树构建过程中进行,后剪枝则是在决策树构建完成后再进行。C4.5主要采用的是后剪枝策略,它从决策树的底部开始,删除一部分对最终分类结果影响不大的分支,以简化模型。 4. 连续属性的处理:ID3算法只能处理离散属性,而C4.5对连续属性也进行了有效的处理。在C4.5算法中,首先需要确定一个连续属性的分割点,将数据集分割成两部分,然后按照信息增益计算最佳的分割点,这个过程会不断重复直到达到某个条件(比如分割点的数量超过一定的阈值)。 5. 缺失值的处理:在现实世界的数据库中,数据往往不完整,即存在缺失值。C4.5算法能够处理带有缺失值的数据,通过计算属性值的期望信息增益来估算缺失值对分类的影响。 6. 算法效率和复杂度:C4.5算法的效率通常取决于数据集的大小和属性的数量。在实践中,可能需要对数据集进行预处理,比如离散化连续数据、归一化等操作,这些都会影响算法的效率。C4.5算法的时间复杂度主要来自于对每个属性信息增益的计算,因此算法的效率很大程度上取决于属性数量。 以上是对标题和描述中提及的C4.5算法的详细知识点解读。针对提供的文件信息,压缩包子文件的文件名称列表提到包含“C4.5算法数据以及C源代码”,说明用户可以获取到完整的C4.5算法的C语言实现源代码以及一些测试数据。这意味着用户不仅能够学习到算法理论,还能通过运行源代码和测试数据来实际观察C4.5算法的运行结果和效果,从而更深入地理解和掌握这一数据挖掘领域的核心算法。

相关推荐

filetype

你是武汉大学信息管理学院信息管理与信息系统专业大三下的学习,请你完成应用机器学习过程的实验任务,实验要求如下:1、根据理论课给出的决策树框架,利用C4.5算法,修改课程中的ID3决策树程序代码; 2、进一步修改代码实现CART决策树程序; 3、使用Titanic数据集,应用留出法、交叉验证法,用上述两种决策树程序进行训练和验证;代码如下:''' Created on Oct 12, 2010 Decision Tree Source Code for Machine Learning in Action Ch. 3 @author: Peter Harrington ''' from math import log import operator def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing','flippers'] #change to discrete values return dataSet, labels def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: #the the number of unique elements and their occurance currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob,2) #log base 2 return shannonEnt def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] #chop out axis used for splitting reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0; bestFeature = -1 for i in range(numFeatures): #iterate over all the features featList = [example[i] for example in dataSet]#create a list of all the examples of this feature uniqueVals = set(featList) #get a set of unique values newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value)

filetype

这是我的mdp文件title = GROMOS 54A7 BSLA MD simulation integrator = md dt = 0.001 nsteps = 50000000 ; 50 ns ; OUTPUT CONTROL OPTIONS nstxout = 0 ; suppress .trr output nstvout = 0 ; suppress .trr output nstlog = 500000 ; Writing to the log file every 500 ps nstenergy = 500000 ; Writing out energy information every 500 ps nstxtcout = 500000 ; Writing coordinates every 500 ps cutoff-scheme = Verlet nstlist = 10 ns-type = Grid pbc = xyz rlist = 1.0 coulombtype = PME pme_order = 4 fourierspacing = 0.16 rcoulomb = 1.0 vdw-type = Cut-off rvdw = 1.0 Tcoupl = v-rescale tc-grps = Protein Non-Protein tau_t = 0.1 0.1 ref_t = 298 298 DispCorr = EnerPres Pcoupl = C-rescale Pcoupltype = Isotropic tau_p = 2.0 compressibility = 4.5e-5 ref_p = 1.0 gen_vel = no constraints = none continuation = yes constraint_algorithm = lincs lincs_iter = 2 lincs_order = 2 这是错误内容 Executable: /public/software/gromacs-2023.2-gpu/bin/gmx_mpi Data prefix: /public/software/gromacs-2023.2-gpu Working dir: /public/home/zkj/BSLA_in_Menthol_and_Olecicacid/run1 Command line: gmx_mpi mdrun -deffnm npt-nopr -v -update gpu -ntmpi 0 -ntomp 1 -nb gpu -bonded gpu -gpu_id 0 Reading file npt-nopr.tpr, VERSION 2023.2 (single precision) Changing nstlist from 10 to 100, rlist from 1 to 1.065 Update groups can not be used for this system because there are three or more consecutively coupled constraints Program: gmx mdrun, version 2023.2 Source file: src/gromacs/taskassignment/decidegpuusage.cpp (line 786) Function: bool gmx::decideWhetherToUseGpuForUpdate(bool, bool, PmeRunMode, bool, bool, gmx::TaskTarget, bool, const t_inputrec&, const gmx_mtop_t&, bool, bool, bool, bool, bool, const gmx::MDLogger&) Inconsistency in user input: Update task on the GPU was required, but the following condition(s) were not satisfied: The number of coupled constraints is higher than supported in the GPU LINCS code. For more information and tips for troubleshooting, please check the GROMACS website at http://www.gromacs.org/Documentation/Errors MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD with errorcode 1. NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes. You may or may not see output from other processes, depending on exactly when Open MPI kills them. [warn] Epoll MOD(1) on fd 8 failed. Old events were 6; read change was 0 (none); write change was 2 (del): Bad file descriptor [warn] Epoll MOD(4) on fd 8 failed. Old events were 6; read change was 2 (del); write change was 0 (none): Bad file descriptor

pobudeyi
  • 粉丝: 28
上传资源 快速赚钱