【Python数据分析系列】筛选出DataFrame中指定列都不包含缺失值的记录(附源码和实现效果)

本文介绍了如何使用pandas库在DataFrame中筛选出指定列不包含缺失值的记录,并提供了一个代码示例。作者还分享了自己在数据挖掘领域的经验,承诺通过简单方式教授相关知识和资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实现功能

筛选出DataFrame中指定列都不包含缺失值的记录

二、实现代码

import pandas as pd

# 创建示例DataFrame
data = {
    'A': [1, 2, 3, None, 5],
    'B': [1, None, 3, 4, 5],
    'C': [1, 2, 3, 4, 5]
}
df = pd.DataFrame(data)

# 筛选出指定列都不包含缺失值的记录
columns_to_check = ['A', 'B']
filtered_df = df[df[columns_to_check].notna().all(axis=1)]

print(filtered_df)

三、实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。关注底部公众号,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值