【Python时序预测系列】时序数据采样间隔不规律的解决方案(案例)

本文介绍了如何在处理时序数据时,面对采样间隔不规律的问题,通过Pandas的resample和interpolate方法以及Scipy的interp1d函数,实现数据的规律化间隔构造和插值填充,以确保时序分析的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、引言

        在做时序数据相关任务时候,会遇到采样的间隔不规律的情况,比如采样周期为月,但是有的月份应该种种原因未能成功采样,如下:

图片

        这时候运用统计模型进行时序分析的时候往往会出现问题,所以我们需要构造规律的时间间隔,然后对构造出的月份的数据进行插值。

二、实现过程

方法一:先构造、后填充

代码:

import pandas as pd
# 创建一个包含不规律时间间隔的DataFrame对象
df = pd.DataFrame({
    'time': ['2013-01-01', '2013-02-01', '2013-04-01', '2013-06-01', '2013-07-01'],
    'value': [2, 4, 5, 7, 9]
})

# 将时间列转换为 pandas 的日期时间类型
df['time'] = pd.to_datetime(df['time'])
# 将日期列设置为索引
df.set_index('time', inplace=True)
# 构造规律的时间间隔
df = df.resample('MS').asfreq()
print(df)

# 使用插值法填充缺失值
df['value'] = df['value'].interpolate()
interpolated_df = df

# 输出结果
print(interpolated_df)

首先将不规律的时间点和对应的数值存储在一个 pandas 的 DataFrame 对象中。然后,我们将时间列转换为 pandas 的日期时间类型,以便后续处理。接下来,使用resample方法将时间序列转换为规律的时间间隔(月份),并使用asfreq方法将缺失的月份填充为 NaN 值。最后,我们使用interpolate方法对数值列进行插值操作,填补缺失的数值。

结果:

图片

方法二:先填充、后构造

代码:

import pandas as pd
from scipy.interpolate import interp1d

# 创建一个包含不规律时间间隔的DataFrame对象
df = pd.DataFrame({
    'time': ['2013-01-01', '2013-02-01', '2013-04-01', '2013-06-01', '2013-07-01'],
    'value': [2, 4, 5, 7, 9]
})

# 将时间列转换为 pandas 的日期时间类型
df['time'] = pd.to_datetime(df['time'])

# 构造规律的时间间隔
start_time = df['time'].min()
end_time = df['time'].max()
regular_time = pd.date_range(start=start_time, end=end_time, freq='MS')

# 使用 interp1d 函数对规律时间间隔进行插值操作
# interp1d(df['time'].values.astype(float), df['value'].values)返回一个函数
interpolated_values = interp1d(df['time'].values.astype(float), df['value'].values)(regular_time.values.astype(float))

# 创建包含插值结果的DataFrame对象
interpolated_df = pd.DataFrame({'time': regular_time, 'value': interpolated_values})

# 输出结果
print(interpolated_df)

先基于原数据构造出构造规律的时间间隔,然后基于原数据使用 interp1d 函数对构造出的规律时间间隔进行插值操作,最终创建出新的规律的时间间隔的数据。

结果:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值