
Document number: P0318R1

Date: 2018-03-30

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper proposes to introduce two new transformation type traits unwrap_reference and unwrap_ref_decay

associated to the type deduction when reference_wrapper<T> can be used to mean T& .

Introduction
Motivation
Proposal
Design rationale
Proposed wording
Implementability
Open points
Acknowledgements
References
History

This paper proposes to introduce two new transformation type traits unwrap_reference and unwrap_ref_decay

associated to the type deduction when reference_wrapper<T> can be used to mean T& .

There are some places in the standard where we can find wording such as

Returns: pair<V1, V2>(std::forward<T1>(x), std::forward<T2>(y)); where V1 and V2 are determined
as follows: Let Ui be decay_t<Ti> for each Ti . Then each Vi is X& if Ui equals
reference_wrapper<X> , otherwise Vi is Ui .

The intent is hard to catch and should be described only once as it is the case of DECAY_COPY , e.g.
UNWRAP_REF_DECAY .

unwrap_ref_decay and unwrap_reference

Table of Contents

Introduction

Motivation

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#references
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r1.md#history

In addition the author believes that using these kind of macros when we are able to define them using functions or traits
makes the standard less clear.

Compare the previous wording to

Returns:
pair<unwrap_ref_decay_t<T1>, unwrap_ref_decay_t<T2>>(std::forward<T1>(x), std::forward<T2>(y));

If the traits are not adopted, the author suggest to use UNWRAP_REF_DECAY (T) and define it only once on the standard.

This trait can already be used in the following cases

[pair.spec] p8
[tuple.creation] p2,3
Concurrent TS P0159R0 make_ready_future

To the knowledge of the author decay_unwrap is used already in HPX, and in Boost.Thread as deduced_type .

The author plans to use it also in other factory proposals as the ongoing P0338R0 and P0319R0.

We propose to:

add an unwrap_reference type trait that unwraps a reference_wrapper ;
add a unwrap_ref_decay type trait that decay and then unwraps if wrapped.

Having a way to wrap a reference with reference_wrapper needs a way to unwrap it.

unwrap_ref_decay can be defined in function of decay and a unwrap_reference .

It could be seen as an implementation detail, but seems useful.

unwrap_ref_decay can be considered as an implementation detail as it is equivalent to
unwrap_reference<decay_t<T>> . However, the author find that it makes the wording much simpler.

These changes are entirely based on library extensions and do not require any language features beyond what is available in
C++17.

Proposal

Design rationale

unwrap_reference type trait

unwrap_ref_decay type trait

Impact on the standard

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0319r0.pdf

This wording is relative to N4727.

20.9 Header <functional> synopsis

Change [function.objects], header synopsis, after reference_wrapper

namespace std {
 [...]

 template <class T>
 struct unwrap_reference;

 template <class T>
 struct unwrap_ref_decay : unwrap_reference<decay_t<T>> {}

 template <class T>
 using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;

 [...]
}

Add a subsection section

Transformation Type trait unwrap_reference [function.objects.unwrapref]

template <class T>
struct unwrap_reference;

The member typedef type of unwrap_reference <T> shall equal X& if T equals reference_wrapper<X> , T

otherwise.

23.4.3 Specialized algorithms [pairs.spec]

Replace

9 Returns: pair<V1, V2>(std::forward<T1>(x), std::forward<T2>(y)); where V1 and V2 are
determined as follows: Let Ui be decay_t<Ti> for each Ti . Then each
Viv is X& if Ui equals reference_wrapper , otherwise Vi is Ui`.

by

Let Vi is unwrap_ref_decay_t <Ti> .

9 Returns: pair<V1, V2>(std::forward<T1>(x), std::forward<T2>(y)); .

23.5.3.4 Tuple creation functions [tuple.creation]

Proposed wording

General utilities library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf

Replace

2 The pack VTypes is defined as follows. Let Ui be decay_t<Ti> for each Ti in TTypes . If Ui is a
specialization of reference_wrapper , then Vi in VTypes is Ui::type& , otherwise Vi is Ui .

by

2 Let VTypes… be unwrap_ref_decay_t<TTypes>… .

The implementation is really simple

template <class T>
struct unwrap_reference { using type = T; }
template <class T>
struct unwrap_reference<reference_wrapper<T>> { using type = T&; }

template <class T>
struct unwrap_ref_decay : unwrap_reference<decay_t<T>> {}

template <class T>
using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;

We have some uses of these traits to simplify the wording of the not_fn function object in the Fundamental Ts N4600 and
maybe also the bind_front function object P0356R2.

If desired the changes in <functional> could be duplicated to <experimental/functional> .

We have some uses of these traits to simplify the wording of the make_ready_function factory the Concurrent Ts.

If the dependency is worth, additional changes could be applied to P0159R0.

2.10 Function template makereadyfuture [futures.makereadyfuture]

template <class T>
future<V> make_ready_future(T&& value);

future<void> make_ready_future();

Replace

Implementability

Open question

Do we want this to be duplicated on the Fundamental TS?

Do we want the Concurrent Ts to depend on the Fundamental TS?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4600.html#func.not_fn
file:///Users/viboes/github/std_make/doc/proposal/utilities/www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/P0356R2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

3 Let U be decay_t<T> . Then V is X& if U equals reference_wrapper<X> , otherwise V is U .

by

3 Let U be unwrap_ref_decay_t<T> .

Thanks to Agustín Bergé K-ballo who show me that HPX uses these traits already.

N4600 - Working Draft, C++ Extensions for Library Fundamentals, Version 2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4600.html#func.not_fn

N4727 N4727 - Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf

P0159R0 - Draft of Technical Specification for C++ Extensions for Concurrency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

P0319R0 Adding Emplace Factories for promise/future

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0319r0.pdf

P0338R0 - C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf

P0356R2 - Simplified partial function application

www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/P0356R2.html

make.impl C++ generic factory - Implementation

https://github.com/viboes/std-make/blob/master/include/experimental/stdmakev1/make.hpp

Boost.Thread http://www.boost.org/doc/libs/1600/doc/html/thread.html

HPX http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html

Take in account the LEWG feedback from JAX 2017

Maintain unwrap_reference

Acknowledgements

References

History

Changes since p0318r0

http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4600.html#func.not_fn
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0319r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
file:///Users/viboes/github/std_make/doc/proposal/utilities/www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/P0356R2.html
https://github.com/viboes/std-make/blob/master/include/experimental/std_make_v1/make.hpp
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html

Rename decay_unwrap to unwrap_ref_decay .
Remove the open points.
Update the wording and reduce the change to the IS C++20 and left the possibility to update the TS N4600 so that other
TS's can profit of those traits as e.g. the Concurrent Ts V2 P0159R0.
Added other ongoing proposals that could take advantage of this proposal.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4600.html#func.not_fn
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

