多尺度特征融合

又搬了一个啊 勤劳的搬家公司就是我...

论文先行 论文地址:https://arxiv.org/pdf/2112.13082.pdf

此为一种基于单模态语义分割的新型坑洼检测方法。它首先使用卷积神经网络从输入图像中提取视觉特征,然后通道注意力模块重新加权通道特征以增强不同特征图的一致性。随后,研究者采用了一个空洞空间金字塔池化模块(由串联的空洞卷积组成,具有渐进的扩张率)来整合空间上下文信息。

这有助于更好地区分坑洼和未损坏的道路区域。最后,使用研究者提出的多尺度特征融合模块融合相邻层中的特征图,这进一步减少了不同特征通道层之间的语义差距。在Pothole-600数据集上进行了大量实验,以证明提出的方法的有效性。定量比较表明,新提出的方法在RGB图像和转换后的视差图像上均达到了最先进的 (SoTA) 性能,优于三个SoTA单模态语义分割网络。

在最先进的(SoTA)语义分割CNN中,全卷积网络(FCN)用卷积层替换了传统分类网络中使用的全连接层,以获得更好的分割结果。上下文信息融合已被证明是一种有效的工具,可用于提高分割精度。ParseNet通过连接全局池化特征来捕获全局上下文。PSPNet引入了空间金字塔池化(SPP)模块来收集不同尺度的上下文信息。Atrous SPP(ASPP)应用不同的空洞卷积来捕获多尺度上下文信息,而不会引入额外的参数。

是又一个新框架...

给定道路图像,坑洼可以具有不同的形状和尺度。我们可以通过一系列的卷积和池化操作获得顶层的特征图。虽然特征图具有丰富的语义信息,但其分辨率不足以提供准确的语义预测。不幸的是,直接结合低级特征图只能带来非常有限的改进。为了克服这个缺点,研究者设计了一个有效的特征融合模块。

yolov8多尺度特征融合模块是一种用于目标检测的网络模块,用于提高检测准确性和多尺度目标检测的能力。它在yolov7的基础上进行了改进和优化。 该模块的核心思想是通过对不同层级特征进行融合,从而充分利用图像中不同尺度的信息进行目标检测。具体来讲,它引入了多尺度融合池化层和多尺度反卷积层。 多尺度融合池化层通过将不同层级的特征图进行池化操作,使得它们具有相同的尺度。这样一来,不同层级的特征图就可以直接进行特征融合操作,使得网络能够更好地捕捉到不同尺度目标的特征。 多尺度反卷积层则通过上采样操作,将低分辨率的特征图恢复到原始图像的尺度。这样一来,网络就可以从不同层级的特征图中获取更为细粒度的信息,提高目标检测的精确度。 此外,yolov8多尺度特征融合模块还采用了跳跃连接的方式,将多个层级的特征图进行连接,从而进一步提高检测性能。跳跃连接可以帮助网络更好地处理特征图中的细节信息,提高目标的定位能力。 总的来说,yolov8多尺度特征融合模块通过对不同层级特征的融合和利用,提高了目标检测的性能和多尺度检测的能力。通过引入多尺度融合池化层、多尺度反卷积层和跳跃连接等技术手段,它能够更好地捕捉到不同尺度目标的特征,提高检测的准确性和稳定性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值