感知机的损失函数:
L(w,b)=−∑xi∈Myi(w⋅xi+b)(1) L(w, b) = - \sum_{x_i \in M}y_i (w \cdot x_i + b) \tag {1} L(w,b)=−xi∈M∑yi(w⋅xi+b)(1)
目标是最小化这个损失函数。
使用梯度下降法求出L(w,b)L(w,b)L(w,b)$的偏导,使w,b向导数的负方向移动。
{
∇wL(w,b)=−∑xi∈Myixi∇bL(w,b)=−∑xi∈Myi(2) \begin{cases} \nabla_wL(w,b) = - \sum_{x_i \in M}y_ix_i \\ \nabla_bL(w,b) = - \sum_{x_i \in M}y_i \end{cases} \tag {2} {
∇