2-3 感知机梯度下降法的推导过程

本文详细介绍了感知机的损失函数L(w,b),并利用梯度下降法求解损失函数的最小值。通过求导得到w和b的偏导数,明确了在随机梯度下降法中,当误分类点为(xi,yi)时,权重w和偏置b的更新规则,以学习率η进行调整。" 94149343,8609429,精通PythonBeautifulSoup库指南,"['Python库', '前端开发', '数据抓取']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感知机的损失函数:
L(w,b)=−∑xi∈Myi(w⋅xi+b)(1) L(w, b) = - \sum_{x_i \in M}y_i (w \cdot x_i + b) \tag {1} L(w,b)=xiMyi(wxi+b)(1)
目标是最小化这个损失函数。

使用梯度下降法求出L(w,b)L(w,b)L(w,b)$的偏导,使w,b向导数的负方向移动。
{ ∇wL(w,b)=−∑xi∈Myixi∇bL(w,b)=−∑xi∈Myi(2) \begin{cases} \nabla_wL(w,b) = - \sum_{x_i \in M}y_ix_i \\ \nabla_bL(w,b) = - \sum_{x_i \in M}y_i \end{cases} \tag {2} {

<think>嗯,用户问的是如何用随机梯度下降法(SGD)优化高斯判别分析(GDA)模型的参数来实现分类问题。首先,我需要回忆一下GDA的基本原理和SGD的工作机制。 GDA属于生成模型,假设数据服从高斯分布,通过极大似然估计来求解参数。通常,GDA的参数包括各类别的均值向量、协方差矩阵和先验概率。传统上,这些参数是通过闭式解来计算的,也就是直接通过公式求解,不需要迭代优化。但用户现在想用SGD来优化,这可能是因为数据集太大,或者想在线学习,这时候传统的闭式解计算可能效率不高。 那么问题来了,SGD通常用于优化损失函数,比如在逻辑回归中最小化交叉熵损失。但GDA本身是一个生成模型,参数估计是基于极大似然,而极大似然通常是通过求导并令导数为零得到解析解。所以,如何将GDA的参数估计转化为一个可以用SGD优化的损失函数呢? 首先,我需要明确GDA的似然函数是什么。对于二分类问题,假设类别标签y服从伯努利分布,特征x在给定y的情况下服从高斯分布。所以,联合似然函数是各个样本的似然乘积,取对数后得到对数似然函数。最大化对数似然即可得到参数估计。 但是,SGD需要的是一个可微的损失函数,通常是负对数似然,这样最小化负对数似然就等价于最大化似然。所以,可能需要将GDA的参数估计问题转化为最小化负对数似然的问题,然后使用SGD来更新参数。 不过,GDA的参数包括均值μ0、μ1,协方差矩阵Σ,以及先验概率φ。其中,协方差矩阵Σ在传统方法中是共享的,即两个类别的高斯分布有相同的协方差矩阵。这时候,如何用SGD来更新这些参数呢? 可能的步骤是: 1. 定义损失函数为负对数似然函数。 2. 对每个参数(μ0、μ1、Σ、φ)求梯度3. 使用SGD每次用一个样本或小批量样本来估计梯度,并更新参数。 但这里有个问题:协方差矩阵Σ的参数数量是O(d&sup2;)的,对于高维数据来说,直接更新可能计算量很大。而且,在传统GDA中,Σ的计算是闭式的,涉及到样本的协方差。如果用SGD,可能需要重新参数化Σ,比如使用向量化或其他方式,或者假设Σ是对角矩阵来减少参数数量。 另外,先验概率φ通常是根据各类别样本比例直接计算的,是否需要在SGD中更新?或者可以预先计算并固定? 可能的解决方法是: - 将φ作为参数之一,通过SGD更新,或者保持φ为样本比例,每次动态调整- 对μ0和μ1,每次用样本的梯度来更新。 - 对于Σ,可能需要更复杂的梯度计算,或者采用在线更新的方式,比如使用移动平均来估计协方差。 不过,用户提供的引用中有提到,在Logistic回归中使用SGD是因为损失函数只涉及误分类样本,但GDA的似然函数涉及所有样本,所以可能需要使用批量梯度下降或者小批量梯度下降。然而,用户明确提到想用SGD,所以需要处理每个样本的梯度。 具体来说,GDA的似然函数对于每个样本来说,可以分解为p(x|y) * p(y),所以对数似然是log p(x|y) + log p(y)。对于高斯分布,p(x|y=k)的概率密度函数是多元高斯分布,其对数形式涉及(x-μ_k)^T Σ^{-1} (x-μ_k)等项。 因此,损失函数可以定义为负的对数似然,即对于每个样本(x_i, y_i),计算: L_i = - [ log p(y_i) + log p(x_i | y_i) ] 然后,对L_i关于各个参数求梯度,并更新参数。 具体来说,对于μ_k的梯度: ∂L_i/∂μ_k = 如果y_i=k,则 Σ^{-1}(x_i - μ_k),否则0。但因为Σ是共享的,可能需要考虑所有样本对Σ的影响。 不过,这里可能比较复杂,因为Σ的估计依赖于所有样本的协方差,而SGD是逐个样本更新的。或许可以采用在线更新的方式,比如每次更新μ和Σ的估计,类似于在线EM算法。 或者,可以将Σ表示为参数,并对其求梯度,类似于神经网络中的参数更新。不过,协方差矩阵需要保持正定,这在梯度下降中可能难以保证,需要特殊处理,比如使用Cholesky分解参数化Σ。 总结步骤可能如下: 1. 初始化参数:μ0、μ1、Σ、φ。 2. 对于每个样本或小批量样本: a. 计算该样本的负对数似然损失。 b. 计算损失对各个参数的梯度。 c. 更新参数:参数 = 参数 - 学习率 * 梯度3. 重复直到收敛。 但具体如何计算梯度需要详细推导。 例如,对于μ0的梯度: log p(x_i | y_i=0) 的导数是 Σ^{-1}(x_i - μ0),所以损失L_i关于μ0的梯度-Σ^{-1}(x_i - μ0) * I(y_i=0),其中I是指示函数。 同样,对于μ1的梯度-Σ^{-1}(x_i - μ1) * I(y_i=1)。 对于Σ,需要考虑其梯度。由于Σ是对称的,可能需要更复杂的求导。但直接求导可能困难,可以考虑使用矩阵的梯度,或者使用近似方法。 另外,先验概率φ的梯度可能涉及样本类别的比例,但由于φ通常是一个标量(二分类中),可以用样本中类别1的比例来估计,可能不需要通过梯度更新,或者将其视为参数,通过梯度更新。 不过,这可能比较复杂,尤其是协方差矩阵的更新。因此,可能在实际应用中,GDA的参数还是更倾向于使用闭式解,而SGD可能不太适用,或者需要简化假设,比如假设Σ是对角矩阵,这样可以减少参数数量,并简化梯度计算。 此外,用户提供的引用[3]提到Fisher&#39;s线性判别分析(FLDA)是生成和判别方法的折中,但这里的问题是关于GDA的。不过,引用[3]提到FLDA的维度限制,可能对理解问题没有直接帮助。 另外,引用[4]提到损失函数和SGD的更新,但那里的损失函数是针对感知机的,可能不同。不过,SGD的基本步骤类似:计算损失,求梯度,更新参数。 综合上述思考,可能的回答步骤包括: 1. 将GDA的参数估计转化为损失函数的最小化问题。 2. 推导各个参数的梯度3. 设计SGD更新规则。 4. 处理协方差矩阵的正定性问题。 5. 可能的简化假设(如对角协方差矩阵)。 6. 实现步骤的伪代码或说明。 需要注意,实际应用中,GDA通常不用SGD优化,因为闭式解更高效准确,但在特定场景下(如流式数据或超大模型)可能需要在线学习,此时SGD可能有意义。</think>### 使用随机梯度下降法(SGD)优化高斯判别分析(GDA)模型的参数 #### 1. 高斯判别分析(GDA)的模型假设 GDA假设不同类别的数据服从多元高斯分布,且各类别共享相同的协方差矩阵 $\Sigma$。对于二分类问题: - 类别标签 $y \sim \text{Bernoulli}(\phi)$ - 特征 $x | y=k \sim \mathcal{N}(\mu_k, \Sigma)$,其中 $k \in \{0,1\}$ #### 2. 损失函数定义 GDA的参数为 $\theta = \{\mu_0, \mu_1, \Sigma, \phi\}$,传统方法通过极大似然估计(MLE)求解。为使用SGD,需构造**负对数似然损失函数**: $$ L(\theta) = -\sum_{i=1}^N \left[ y_i \log p(x_i|y_i=1) + (1-y_i) \log p(x_i|y_i=0) + \log p(y_i) \right] $$ 其中 $p(x_i|y_i=k) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x_i-\mu_k)^T\Sigma^{-1}(x_i-\mu_k)\right)$,$D$ 为特征维度[^3]。 #### 3. 梯度计算与参数更新 每次使用单个样本 $(x_i, y_i)$ 计算梯度并更新参数: - **均值向量 $\mu_k$ 的梯度**: $$ \nabla_{\mu_k} L = \begin{cases} \Sigma^{-1}(x_i - \mu_k) & \text{若 } y_i = k \\ 0 & \text{否则} \end{cases} $$ - **协方差矩阵 $\Sigma$ 的梯度**(需对称性约束): $$ \nabla_{\Sigma} L = -\frac{1}{2}\Sigma^{-1} + \frac{1}{2}\Sigma^{-1}(x_i - \mu_{y_i})(x_i - \mu_{y_i})^T\Sigma^{-1} $$ - **先验概率 $\phi$ 的梯度**: $$ \nabla_{\phi} L = \frac{y_i}{\phi} - \frac{1-y_i}{1-\phi} $$ #### 4. 实现步骤 1. **初始化参数**:随机初始化 $\mu_0, \mu_1, \Sigma$(需保证正定性),$\phi$ 可初始化为类别比例。 2. **迭代更新**: - 对每个样本 $(x_i, y_i)$: - 计算梯度 $\nabla_{\mu_0} L, \nabla_{\mu_1} L, \nabla_{\Sigma} L, \nabla_{\phi} L$ - 更新参数: $$ \theta \leftarrow \theta - \eta \nabla_{\theta} L $$ 其中 $\eta$ 为学习率。 3. **正则化**:对 $\Sigma$ 添加小量 $\epsilon I$ 确保正定性。 #### 5. 关键注意事项 - **协方差矩阵的对称性**:需在更新后强制对称性(如取 $\frac{1}{2}(\Sigma + \Sigma^T)$)。 - **学习率调整**:建议使用自适应学习率方法(如Adam)。 - **小批量扩展**:可将单样本梯度扩展为小批量平均梯度以提高稳定性[^2]。 #### 示例代码框架 ```python import numpy as np class GDA_SGD: def __init__(self, dim, lr=0.01): self.mu0 = np.random.randn(dim) self.mu1 = np.random.randn(dim) self.Sigma = np.eye(dim) # 初始化为单位矩阵保证正定 self.phi = 0.5 self.lr = lr def update(self, x, y): # 计算梯度 if y == 1: grad_mu1 = np.linalg.inv(self.Sigma) @ (x - self.mu1) self.mu1 -= self.lr * grad_mu1 else: grad_mu0 = np.linalg.inv(self.Sigma) @ (x - self.mu0) self.mu0 -= self.lr * grad_mu0 # 更新Sigma(简化示例,需实际计算梯度) residual = x - (self.mu1 if y == 1 else self.mu0) self.Sigma -= self.lr * (np.outer(residual, residual) - self.Sigma) / 2 # 更新phi self.phi -= self.lr * (y / self.phi - (1 - y) / (1 - self.phi)) # 保持Sigma正定 self.Sigma = (self.Sigma + self.Sigma.T) / 2 + 1e-6 * np.eye(self.Sigma.shape[0]) ``` 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值