第3章 k近邻算法

本文深入探讨了K近邻算法(KNN),一种基于实例的学习方法,适用于分类和回归任务。通过在训练数据集中查找与新实例最邻近的k个实例,KNN能够预测新实例的类别或数值。文章还介绍了KD树这一数据结构,它能加速k维空间中数据的搜索过程,提高算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K近邻算法

KNN,k-nearest neighbor

给定一个训练数据集,对新的输入实例,在训练数据集找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。

分类算法,也可以作回归算法

模型

模型由三个基本要素 — 距离度量、k值的选择、分类决策规则
当距离度量、k值的选择、分类决策规则确定后,其分类结果唯一确定。

算法

kd树。
kd树是一种便于对k维空间中的数据进行快速检索的数据结构。
kd树是二叉树,表示对k维空间的一个划分。
kd树每个结点对应于k维空间划分中的一个超矩形区域。
复用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值