第5章 决策树

本文深入解析决策树算法,涵盖其在分类与回归问题中的应用,强调模型的可读性和分类速度优势。文章详细介绍了决策树的构建过程,包括特征选择、生成及剪枝步骤,并探讨了正则化极大似然损失函数的最小化策略。此外,还对比了ID3、C4.5和CART等不同决策树算法的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树

可用于分类或回归问题
优点:模型具有可读性,分类速度快

模型

包括3个步骤:特征选择、决策树的生成、决策树的剪枝

策略

损失函数:正则化的极大似然函数。
策略:最小化损失函数

算法

ID3、C4.5、CART

CART:classification and regression tree

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值