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ABSTRACT
The Controller Area Network (CAN) in cars is critical to their
safety and performance and is now regarded as being vulnerable
to cyberattack. Recent studies have looked at securing the CAN
and at intrusion detection methods so that attacks can be quickly
identified. The CAN has qualities that distinguish it from other
computer networks, while the nature of car production and usage
also provide challenges. Thus attack detection methods employed
for other networks lack appropriateness for the CAN. This paper
surveys the methods that have been investigated for CAN intrusion
detection, and considers their implications in terms of practicability
and requirements. Consequent developments that will be needed
for implementation and research are suggested.
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1 INTRODUCTION
The possibility of cyberattack on the Controller Area Network
(CAN) in cars has led to an interest in methods to detect intrusions
within the CAN bus traffic [37]. Reviews of methods have consid-
ered intrusion detection on computers in general (e.g. [3, 11, 33]),
but the nature of the automobile CAN warrants specific consider-
ations. Differentiating factors include the low processing power
available to the Electronic Control Units (ECUs) on the CAN; the
lifecycle, maintenance and usage patterns of the car; the rapid gen-
eration of CAN data records; quick decision requirements, and the
limited CAN dictionary sharing by automotive component manu-
facturers. Also, the safety critical nature of the CAN bus and the
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criticality of decisions made whilst driving would elevate the legal
connotations of a CAN intrusion detection system (IDS).

This paper reviews recent published studies into intrusion de-
tection methods for the CAN bus. The results of those studies are
discussed, and the potential for adoption of the methods consid-
ered. We also consider additional areas of research that would be
warranted before the methods are adopted.

Contributions of this paper:

(1) Review of recent studies into analysis methods for CAN
intrusion detection.

(2) Consideration of the implications for implementing those
methods in a CAN IDS, and the research challenges for fully
evaluating them.

The rest of this paper is structured as follows: Section 2 provides
a summary of the CAN. The challenges due to the nature of the
automotive CAN and car usage are discussed in Section 3. Section
4 outlines the categories of intrusion detection methods that have
been studied, with the studies discussed more fully in Sections 5 and
6. The implications for adoption of those methods are considered
in Section 7, with concluding remarks in Section 8.

2 CAN OVERVIEW
The automotive CAN is an in-vehicle network used by components
that control vital car functions, including braking, steering and
engine control. CAN data has a fixed structure. A few CAN packet
types can be broadcast (such as data, remote request, error, and
overload), though CAN cybersecurity research, including the stud-
ies discussed here, often focuses on the data packet, since this is
used to convey information between the ECUs and consequently
might be altered to affect some component of the car’s functionality.
The data component of the CAN data packet comprises 8 one-byte
fields, though these might not all be used by the broadcasting ECU.
Amongst the other fields in the packet is the identifier field, which
contains an ID that ECUs use to determine whether the packet is
relevant to them. An ID should be unique to the broadcasting ECU,
however, the CAN protocol has no authentication, so any node
could conceivably broadcast using an ID belonging to another ECU,
or broadcast an ID that is fully invented. Usually, broadcasting pack-
ets with invented IDs would not be useful to an attacker, since other
nodes would not recognize the ID and ignore the packet. However
CAN arbitration dictates that when two ECUs attempt to broadcast
packets at the same time, the packet with the lowest ID has priority.
Thus, packets with a very low fabricated ID value might be used to
dominate the network in a Denial of Service (DoS) attack.

https://doi.org/10.1145/3273946.3273950
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3 CHALLENGES FOR CAN INTRUSION
DETECTION

Intrusion detection is based on the assumption that the behaviour
of intrusions will differ from the behaviour of legal activity, and
a few analytical methods have been proposed as potential candi-
dates for a CAN IDS. For this review we categorise them broadly
as signature based and anomaly based, which is a distinction made
by researchers across the computing field [26, 29, 30, 33]. Anomaly
based approaches are further categorised into their type of method
employed, such as statistical, knowledge based, clustering/density
based, support vector machines, neural networks, and Markov mod-
els. The latter four categories are examples of Machine Learning
(ML), discussed later.

The accuracy of an IDS is determined by the number of false pos-
itives (wrongly classifying a legitimate event as an attack) and false
negatives (failure to detect an attack) it produces. High rates of ei-
ther are detrimental. Failure to spot attacks is obviously dangerous,
but the nature of driving also makes it important to reduce false
positives, which could cause distraction to the driver, unwarranted
intervention, and future warnings to be ignored. A false positive
rate of 0.0001% could still result in five expected false positives per
hour in a CAN broadcasting 1500 packets per second. Clearly the
IDS would need mechanisms to verify its decisions.

Once an intrusion has been detected, some action would need
to be taken. This is not a trivial problem and would need thorough
analysis, beyond the scope of this paper. Driver intervention and
levels of alert have been considered [14], as have delegation to a
central portal, though network factors would be problematical [19].
Whatever the mode of intervention, the driver’s peace of mind,
avoidance of repeated interaction procedures, and automated sup-
port for intervention choices will need addressing [15]. Hoppe, Kiltz
and Dittman [15] point out the legal requirement in many countries
that automotive systems should not take safety-relevant decisions
autonomously, which would imply the IDS triggers only a warning.
However, this would assume the driver has sufficient knowledge
and time to act appropriately; consequently the inclusion of an
autonomous reaction component might be necessary [27]. Either
way, update mechanisms would need to be available to tailor the
IDS response as threats evolve. Checking that the IDS responses
are being interpreted correctly or amended if necessary, could be
facilitated through feedback mechanisms and, again, implies the
need for updates to the IDS.

The variety of car makes and models, and their varied life-cycles
and dispersed location, makes reliable and regular updating a chal-
lenge, and it is perhaps unwise to assume owners would be able,
or motivated, to update their systems outside the annual service
[15, 27]. An option might be over-the-air updating, though this adds
a potential attack route and logistical challenges. Of relevance here
are proposals to make automotive ECU reflashing faster, simpler
and lighter, such as those made by Bogdan et al. [2].

A system for detecting CAN attacks would need to run in real
time, detecting intrusions quickly, and rapidly eliciting an appro-
priate response without disrupting or delaying the broadcast of
legitimate packets. Compared to PC systems, an IDS for the auto-
motive CAN is likely to be constrained by limited processing power,
limited multi-tasking capability and limited storage capacity [15].

The micro controller commonly used in car ECUs has a memory
of 40-50 KB and the computing power is less than 10 MHz [32].
In spite of the low processing power, Hoppe, Kiltz and Dittmann
[16] propose that each ECU might be given some processing ability,
such as checking packet IDs against its own IDs, thus detecting in-
trusion attacks. Though this would not work in masquerade attacks
that disable the mimicked ECU, and would be difficult to roll-out
to existing cars. A retrospectively fitted, or more substantial, IDS
would probably need creating as a dedicated unit, either attached
to the CAN or attached externally, such as on the ODB-II port.

Research and development into CAN cyberattacks is hindered by
two major challenges. First, although the CAN protocol is openly
documented [17], the meaning of the data transmitted, and specifics
pertaining to any carmake ormodel, such as the expected frequency
of broadcasts, or the matching of packet IDs to ECUs or functions,
is not available to most researchers. This makes the expected be-
haviour of the CAN traffic difficult to comprehensively map, and
as a consequence, the boundary between a normal signature and
an attack signature may be difficult to determine. In addition, the
behaviour of an ECU might not be fully known [36].

Second, obtaining labelled attack data is difficult. Again, this
is not published by manufacturers, and generating it is difficult
because: a) testing attack scenarios using cars is dangerous, costly,
potentially damaging to the car, and may require ECU program-
ming knowledge; and b) the nascent nature of CAN cybersecurity
means the invented attack scenarios are speculative, incomplete
and embryonic.

4 CAN IDS RESEARCH
Table 1 presents a general summary of the methods that have been
proposed for network intrusion detection in terms of overheads,
advantages and disadvantages. The Set-up overhead column lists
the relative machine effort to establish or up-date the decision
algorithm, and together with the runtime processing and mem-
ory columns is based on opinions expressed in published sources
[3, 8, 13]. As discussed below, we acknowledge that determining
such implementation constraints is simplistic and error prone with-
out a detailed analysis of the algorithms and their specific config-
urations. Even so, the table highlights that some methods, such
as clustering and density based methods, might be too hungry to
run on the limited in-vehicle resources. Likewise, the high training
requirements of some methods makes training in situ problematical.

The setting up of clustering algorithms can be particularly pro-
cessing intensive since they may involve nested iterations through
the training data-set to identify neighbours. That said, the training
overhead across all the methods is high, especially considering the
low processing available on ECUs. Training therefore might not be
viable in-line. Signature, Statistical and Knowledge-Based methods
employ disparate processes and human interventions in their devel-
opment, which are unlikely to be amenable to automated training,
so the overheads are left blank in our table. Although the training
overheads are high, the methods have lower resource usage once
trained, making them generally amenable to in-line detection [3].

Of course, such general estimates of the overheads are not defin-
itive since variations in the implementations will affect processing
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and workload, and would require a thorough analysis of the train-
ing algorithms. Applying a density function or grouping the data
points as dense and connected regions can reduce the overhead in
Clustering methods [1, 3]; likewise, the adjustment of parameters
for the SVM [13]. Never-the-less, the overheads would need to be
considered and minimized if in-line CAN training is considered.

Table 2 summarises the CAN studies that have tested the IDS
methods. Those studies and the methods they employed are dis-
cussed in the next sections. The table also shows the attack manifes-
tation that the studies sought to identify: packet flow (changes in the
timing or number of packets), and payload manipulation (changes
to the values in the packet data fields). Many demonstrated attacks
require the injection of packets at sufficient frequency to over-ride
legitimate information [36, 41]. However, an attack might conceiv-
ably result in little or no change to packet broadcast frequencies,
such as the case where a legitimate ECU is disabled while a mas-
querading component manages to perfectly spoof its broadcast
rates [10, 16]. Therefore detection based on packet payload data
vales, in addition to detection based on packet flow, is likely to be
warranted in a CAN IDS.

Attacks might involve multiple components, defining a convo-
luted scenario. For example, Valasek and Miller [41] demonstrate
an attack to alter the steering. This first requires the car to be fooled
into thinking it was in reverse gear (enabling the autoparking func-
tionality to operate), then steering information is broadcast to get
the car to steer whilst in drive. The authors found that this would
only work at low speed unless the network was also supplied with
bogus speed packets. This use of multiple data fields to stage an
attack suggests a role for detecting contextual discrepancies; for
example, a gear value incongruous with speed or odometer read-
ings. Though the reverse engineering and background analysis
conducted by the attack researchers when devising specific attacks
on defined car models is not an option for a generic IDS product.
Therefore detection methods that are agnostic to the data fields’
purpose might be needed.

5 SIGNATURE DETECTION
Signature based intrusion detection assumes that the signature pat-
terns of the attack are known. The discriminatory features from
the signatures are stored in a database, against which the subse-
quent packets are monitored. Packets with features that match the
database signatures are flagged as violations.

Since they do not need to adapt to the deployed environment,
signature based methods can be easy to deploy initially [33]. They
can detect reliably and generate a very low false positive rate when
the attack signature is known, and they can determine which type
of attack the system is experiencing, which is useful for assessing
the epidemiology of attacks [30]. However, given the still emerg-
ing mode of automotive cyber-attacks, and the disparate life-cycle
of vehicles, signature detection techniques have sometimes been
rejected for CAN anomaly detection (e.g. [15] [27]).

With regard to attack signatures, the newness of the automo-
tive cybersecurity field, and the diversity of potential attack modes
being uncovered (e.g. [6]), together with the ingenuity of hackers,
suggests that it is unwise to assume all attack scenarios will be pre-
dicted. A further hindrance is that the efficiency of signature based

detection may be degraded when the attack activity spans multi-
ple packets [30]. Additional complications stem from the frequent
updates required to keep the signature databases up to date.

In spite of the drawbacks, Studnia et al. [35] proposed a formal
language based approach to model both normal ECU behaviour and
the behaviour of known attack signatures. Their proposed system
first makes a formal check as to whether the packet was compli-
ant with the protocol, followed by a signature-based consistency
check against the current system state and the ECU’s model. For
devising the models, Studnia et al. had access to the specifications
of the CAN network and the ECUs of the sampled car. Though
they acknowledge that parts of the actual system might not adhere
to those specifications, in which cases they suggest the adoption
of machine learning approaches for detection. Their system could
detect intrusions in real-time, but it sometimes failed to detect an
attack if it missed the first packets of the attack broadcast.

6 ANOMALY DETECTION
Anomaly based IDS detect behaviour that deviates from the normal.
The assumption is that the normal behaviour can be sufficiently
profiled and thresholds established to enable the meaningful iden-
tification of deviations. Because anomaly detection is not based
on set signatures, these methods have the potential to generalise,
making it possible to detect previously unknown attacks [30][29].
Further, the profiles used by the system are customised by the learn-
ing algorithm, which makes it difficult for the attacker to know
what activity might trigger an alarm [30].

However, such systems require training and the collection of
data that is sufficiently representative of normal traffic to enable ac-
curate, reliable anomaly boundaries to be determined. As discussed
earlier, acquiring such data for the CAN is problematical. Also, be-
cause anomaly detection looks for anomalous events, rather than a
specified attack, its rates of false positives and false negatives can be
high. Even so, the unpredictability of attack scenarios, together with
the difficulties in determining comprehensive robust signatures,
has led to many studies adopting the anomaly detection approach.
Broadly, these approaches can be categorised into statistical based
approaches, knowledge based approaches, and machine learning,
which can be further categorised according to the machine learning
model applied.

6.1 Statistical
Statistical methods compare the currently observed statistical pro-
file of the system against a previously determined statistical profile.
For example, the system might assess deviations in properties such
as mean, median and mode. In the case of time series data, such
as the CAN bus traffic, statistical methods might employ a rolling
window which reduces the size of the immediate data set analysed.

Statistic based techniques can be univariate or multivariate. Uni-
variate techniques model each variable independently. Some factors
regarding themanner of broadcast, such as timing intervals between
CAN ID broadcasts, might be amenable to univariate analyses, but
they are likely to be less useful for applying to the data contents of
the CAN messages. Here for example, what appears to be a normal
profile (for example, for the steering position) might actually be
malicious in the given context. Therefore, multivariate methods
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Table 1: Computer network intrusion detection method overheads, advantages and disadvantages. The Overhead columns
list the relative machine effort to initially set-up the decision algorithm, and the subsequent relative runtime processing and
memory requirements, expressed in published papers [3, 8, 13].

Method Category Overhead [3, 8, 13] Advantage DisadvantageSet-up Processing Memory
Signature Based Low Medium Low false positive rate for

known attacks.
Assumes the attack signa-
ture is already known. Eas-
ily bypassed by modified at-
tacks [33].

Statistical Medium Low Requires no prior knowl-
edge about normal activ-
ity, and can identify attacks
evolving over a long period
[11, 30].

Can be retrained by
attacker; and not all
behaviours can be stochas-
tically modelled [11, 30].
Thresholds may be difficult
to determine [30]. Unlikely
to capture the interactions
between attributes [5].

Knowledge Based Medium Medium Low false positives. Knowledge may be difficult
to develop. May be difficult
to maintain [30].

Clustering or Density Based O(n3) High High - may
require
matching
against full
training data
set.

Simplicity and understand-
ability [3, 29].

Needs feature reduction to
reduce high dimensionality
[3]. Classification time can
become large as the number
of neighbour comparisons
increases.

Support Vector Machines O(n2) Medium Low Can deal with high-
dimensional data and small
samples [3, 33].

Resource-hungry training
[29]. Prone to high false pos-
itive rate [30]

Neural Networks O(emnk)
where: e
epochs, m
features, n
observations,
k hidden
neurons.

High Low Adaptability to environmen-
tal changes [11]. Ability to
generalise and cope with
noise [20].

Lack of descriptive model
explaining decision [11].
Prone to high false positive
rate [30].

Hidden Markov Models O(nc2) where:
c number of
states

Medium Low Used extensively in IDS [11].
Suitable for assessing transi-
tion sequences [26].

Results are dependent on as-
sumptions about the system
behaviour[11].

might be better suited for detecting intrusions affecting CAN ECU
sensor data.

The complexity of the automobile network is cited as making it
difficult to make a precise statistical model that would allow rare but
legitimate patterns whilst still maintaining a sufficiently low false
positive rate [35]. Even so, statistical models have been considered
for CAN intrusion detection, and some researchers proposing other
methods have suggested them as a supplemental check [37].

Ling and Feng [22] proposed a system using resetable counters
and thresholds to detect any ID broadcast consecutively beyond
a threshold-defined number of times. Such broadcasts might be
indicative of a DoS attack. However, the authors’ reliance on known
thresholds has been challenged [4].

Gmiden, Gimden and Trabelsi [12] considered attacks involving
the injection of malicious packets. They selected IDs broadcast

at fixed time intervals, and used the ID’s own regular frequency
to monitor for increased broadcast frequencies. Song, Kim and
Kim [34] detected attacks where an ID’s packets were injected at
half the normal time interval. For IDs where the normal interval
occasionally fell below 0.2 milliseconds, they determined that this
would not happen for more than three consecutive broadcasts,
unless an injection attack was taking place.

Cho and Shin [7] considered the timing intervals between packet
broadcasts, and proposed a clock-based IDS to detect fabrication,
suspension and masquerade attacks. In fabrication attacks, a com-
promised ECU injects forged packets with a view to distracting
receiver ECUs. Suspension attacks entail an ECU being compro-
mised so as to suspend its transmissions. The masquerade attack is
potentially harder to detect since it does not necessarily alter the
frequency of any ID broadcast, and involves an ECU learning the



Towards Viable Intrusion Detection Methods For The Automotive CAN CSCS 2018, September 13–14, 2018, Munich, Germany

Table 2: Intrusion detection methods used in automotive CAN research. The Intrusion Detection column shows the attack
manifestation that the studies sought to identify: packet flow (changes in the timing or number of packets), and payload
manipulation (changes to the values in the packet data fields).

Category Study Intrusion Detection
Packet Flow Payload

Manipulation
Signature Based Studnia et al. [35]: attack signatures modelled using lan-

guage theory.
X X

Statistical

Ling and Feng [22]: Consecutively broadcast ID thresh-
old count.

X

Cho and Shin [7]: Model of clock behaviours using Re-
cursive Least Squares, with Cumulative Sum analysis to
detect anomalies.

X X

Song, Kim and Kim [34]: Attack score based on message
frequency.

X

Gmiden, Gimden and Trabelsi [12]: Time intervals be-
tween matching CAN IDs.

X

Taylor, Japkowicz and Leblanc [36]: Time interval be-
tween messages assessed statistically using T-Tests.

X

Lee, Jeong and Kim [21]: Time interval of a remote re-
quest broadcast and the received response compared
against mean.

X

Tomlinson et al. [40]: Time intervals between packets
of matching IDs compared with window means using
ARIMA and Z-scores.

X

Knowledge Based Marchetti and Stabili [24]: Transition matrix. X
Studnia et al. [35] Legitimate state transitions. X X

Clustering or Density Based Martinelli et al. [25]: Four nearest neighbour classifiers
tested against an open-sourced CAN dataset.

X X

Tomlinson, Bryans and Shaikh [39]: Detection of packet
data anomalies using one-class Compound Classifier.

X

Support Vector Machines Taylor, Japkowicz and Leblanc [36]: Detection of ma-
nipulated packet frequencies using One Class Support
Vector Machine.

X

Neural Networks
Kang and Kang [18]: Supervised Deep NN trained using
normal and attack CAN packets.

X

Taylor, Leblanc and Japkowicz [37]: Anomaly detection
in data bit words using Long Short-Term Memory recur-
rent neural network.

X

Wasicek and Weimerskirch [42]: Root-Mean-Square
function to decide the degree of anomaly from trained
Bottleneck NN output.

X

Hidden Markov Models Narayanan, Mittal and Joshi[28]: Hidden Markov Model
detecting anomalous changes to speed and RPM.

X

broadcast patterns of another ECU, which it then forces to suspend
broadcasting and itself takes over the broadcasting. Cho and Shin
proposed that their method could pinpoint the attacking ECU, even
in messages broadcast periodically. Their system uses the receiver
ECUs to fingerprint transmitting ECU clock behaviours by using
message periodicity to estimate the transmitter’s clock skews (the
difference in its frequency compared to clocks in other ECUs).

Hoppe, Kiltz and Dittmann [15] devised an attack in which a
malicious component broadcasts a mimic packet to turn off the
lights whenever it detects a legitimate packet calling for them to be

activated. Modelling the flow of packets using an attack simulation,
they observed that the frequency of broadcasts for the packet rose
beyond the maximum 22(±1) per second seen in normal operation.
In addition, the semantic meaning of the packet’s data ("on" or
"off") in the previous 8 packets switched more frequently than
during normal operation. Thus, they treated more than 28 packet
broadcasts per second, combined with more than 4 inversions in
the previous 8 packets, as signifying an anomaly.

Lee, Jeong and Kim [21] considered the time intervals between
the broadcast of a remote request and response packets as a means
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of detecting three types of attack: a) DoS by packet injection; b)
fuzzy attack by packet injection; c) masquerade attack. The authors
reasoned that these attacks would change the intervals between
the remote request and a response by affecting packet arbitration
sequences, or, in the case of masquerade attack, changes in the dis-
tances between nodes, the clock cycles, the processing mechanisms
or the physical ECU qualities. They measured: 1) offset (number
of messages on the CAN between the remote request and the next
message with the matching ID); 2) the proportion of requests with
an offset of one; 3) the proportion of requests not responded to in
the next six messages (an ECU was deemed to be out of action in
this case), and 4) time interval between the request and the match-
ing ID’d message. Conducting DoS and fuzzy attacks that injected
records they observed a decrease in offsets of one message, and an
increase in none-responses. The masquerade attack did not change
the offset rates, since the impersonating node was programmed
to respond in the same manner as the impersonated node, but it
did lead to a longer delay and greater dispersion in the response
times, due, the authors conclude, to the different clock frequency
and location of the impersonating node.

The methods discussed above require prior analysis of the traffic
on the specific CAN instance to decide the values for the discrimi-
nation factors. In contrast, we have looked at methods that might
be used unsupervised and would not need prior analysis of the
traffic [40]. In simulated attacks, two methods, ARIMA and Z-score
were, using broadcast time-intervals, able to detect injected and
dropped packets in the highest priority, most regularly broadcast
CAN packets, with results similar to a supervised method using
prior determined average times. Initial results, however, showed
the performance degraded for detection in lower priority packets;
though we are looking at ways this might be improved, and also
exploring ways to generate more realistic attack data.

6.2 Knowledge based
Knowledge based techniques deduce a set of rules from the train-
ing data. Subsequent events are then classified against these rules.
These techniques can produce a high capture rate and low false
positive rate if the knowledge base is comprehensive enough [11].
However, they rely on knowledge which is difficult to acquire in
the case of CAN traffic.

Marchetti and Stabili [24] proposed building a transition ma-
trix, which contained the legitimate paired sequences of CAN IDs.
Consecutive messages broadcast onto the CAN would then be vali-
dated against the matrix; and messages broadcast out of sequence,
flagged as anomalies. Such an approach would require very little
storage and have low computational costs. They concluded that
this approach gave no false positives, and reliably detected simu-
lated attacks where random sequences of IDs were inserted into
the readings. However, the method was less successful at detecting
replay attacks wherein known sequences are rebroadcast.

Whilst such a matrix approach based on the next legitimate
ID might usefully detect mismatches where an ID is known to
be followed by an ID from a very small subset, it would be less
successful where an ID could be followed by an ID from a large
subset. Our analyses of CAN data from a popular family car shows
this to be the case for many of the IDs (Fig. 1).

Figure 1: Count of different packet IDs observed to follow
each CAN ID in a popular UK family car. The CAN ID rank,
rather than ID value, is represented on the x axis.

6.3 Machine Learning
Machine Learning (ML) methods typically attempt to learn patterns
in the data, and can be supervised or unsupervised. Supervised
learning uses training data containing labelled data, whereas un-
supervised learning uses training data in which the labelling of
the data is unknown; the machine learning algorithm will then
attempt to derive the classes based on some similarity. Some unsu-
pervised machine learning methods offer variations that seek to
determine outliers after being trained just using data from known
normal instances. During such one-class classification training, data
taken from normal operation is analysed to determine a thresh-
old boundary that encompasses the normal instances. Subsequent
instances are then classified as normal if they reside within the
boundary, or anomaly if they are beyond. One-class classification
has been proposed as a likely CAN intrusion detection mechanism
[23, 36, 38]. It is, for example, suitable where training data instances
of attack behaviour are difficult to generate or predict, or where the
simulated attack class risks being too narrowly defined to enable
generalisation [43].

6.3.1 Clustering andOutlier Detection. ClusteringML techniques
adopt the assumption that instances of a particular class have data
profiles that group them into clusters around an archetype. Each
new instance can then be classified according to its distance from
that archetype. Recent approaches to outlier detection have em-
ployed multidimensional distance calculations, enabling multivari-
ate analysis, often combined with density calculations [30].

Clustering approaches can be applied to unsupervised learn-
ing [30]. For unsupervised training on data that includes multiple
classes, the assumption is that the anomalies will form the smaller
of the clusters. For unsupervised training that contains only normal
data, a density measure and distance calculation could determine
the edge of the normal class boundary.

Martinelli et al [25] tested four nearest neighbour classifiers in an
attempt to distinguish between normal CAN packets and simulated
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attack CAN packets, solely from the data fields. The classifiers were
evaluated according to a range of scores that assess the rates of
false and true classifications. All the classifiers were able to classify
inserted packets containing gear and RPM data with full accuracy,
though were not as accurate on the DoS and fuzzy attacks.

Our own research has investigated a one-class nearest neighbour
classifier developed primarily for rapid image processing, which
offers comparatively low processing overheads once trained [39].
The Compound Classifier grows a set of hyperspheres to consume
the normal instance data-point clusters. Subsequent instances that
fall outside all hyperspheres are designated as anomalies. Three
CAN data fields comprising continuous sensor-data were used in
the classifier. However, it gave a false positive rate on the training
data that was high, making it unsuitable in its original configu-
ration, though changes to that configuration might improve its
performance.

6.3.2 Hidden Markov Models. Hidden Markov Models attempt
to predict the subsequent state of a system from considering the
current state. Although they can’t be applied to some processes; for
example, where the future state is independent of the current state
(such as predicting the results in a series of coin tosses), they have
been suggested as having potential in CAN anomaly detection [37].

Narayanan, Mittal and Joshi [28] used gradient data derived
from CAN packets, rather than absolute values, to implement a
Markov-based anomaly detector. From the CAN readings, they
built a time-series vector containing speed and RPM data, which
they were able to identify in the CAN logs they obtained from
three different model cars. They used a Hidden Markov Model to
generate transition probabilities (i.e. probability of changing to the
next state) and emission probabilities (i.e. the probability of the
observed output for the given state). During anomaly detection, the
posterior probability of the next read observation was determined
using a sliding window of immediately prior observations. Their
test data comprised CAN logs in which they changed the data to
show anomalies representative of specific behaviours, e.g. sudden
increase in speed. The authors report that the system successfully
detected the anomalies they generated covering speed and RPM
data, both individually, and in combination.

6.3.3 Support VectorMachines. Support VectorMachines (SVMs)
seek to separate classes using a hyperplane that follows the centre
of the largest margin between classes. The instances on the edge of
each class that determine the margin become the support vectors.
SVMs have the ability to learn from small samples; can cope with
high-dimensional data, and can self-learn [33]. A variant of the
SVM particularly relevant to anomaly detection is the One-Class
SVMs (OCSVMs), which attempts to create a suitable boundary
when trained using only normal instances.

Observing that many IDs seem to be broadcast at fixed frequen-
cies, Taylor, Japkowicz and Leblanc [36] restricted their study to
examples of these, and analysed flows measuring broadcast frequen-
cies and average data-content changes represented by hamming
distance. They compared these with historical values to determine
anomalies. Their study concentrated on attacks that might alter the
ID frequency, either by injecting extra packets or erasing packets,
and compared a statistical approach (T-tests) against a OCSVM.
They found that the Hamming distance added no discriminatory

power, and dropped it from their subsequent comparisons. The
statistical method was able to usefully detect attacks of one second,
though not shorter ones. In comparison, the OCSVM was able to
perfectly detect attacks lasting 0.5s or higher, and reliably detected
short attacks lasting 0.2s in which just three packets were inserted.

6.3.4 Neural Networks. Inspired by biological neural function-
ing, a neural network comprises many simple processing nodes
working in parallel to produced a decision based on their cumulated
outputs. The functioning of the neural network is determined by
the network structure, the processing carried out in each node, and
the adjustment of connection strengths (or weights) applied to the
connections between the nodes.

Kang and Kang [18] looked at packet injection attacks, and tested
a neural network on data from three CAN IDs generated using a
simulator. Attack data was generated by manipulating the data in
the packets to deceive the system and, in addition, Gaussian noise
was added to the value information to add natural randomness.

Taking only packets that used all the available data fields, they
used the neural network to determine the probability of bit val-
ues in any position of the data field. Vectors fed into the neural
network comprised the probability that the bit-symbol at a given
position was 1, and the “attack” or “normal” label assigned to the
training sample. Weights in the neural network were tuned using
back-propagation to minimize the mean squared error between
the predicted value and the output. They concluded that compared
to conventional feedforward neural networks, theirs had a more
accurate and consistent detection performance and the speed of
testing suggested real-time decision making was viable.

Taylor, Leblanc and Japkowicz [37] considered an attack that
transmits legitimate packets that are anomalous only in terms of
the context of recent packets on the bus. Such an attack might
occur, for example, where malicious Keep Lane Assist messages
falsify the steering requirement. They used a Long Short-Term
Memory (LSTM) recurrent neural network (RNN) for the anomaly
detection. The LSTM component is added to the RNN, offering
the capacity to forget, or to remember, more distant events, thus
enabling consideration of contextual information.

For each ID, the authors trained a detector to predict the next
packet data bit values, the output being predicted values of between
0 and 1 for each of the 64 bits in the data fields. They found that
the LSTM worked well for detecting unusual bit patterns (such as
when bit values are randomly flipped). However, there were three
IDs for which the anomaly detection was poor; the reasons were
not readily apparent to the authors. They also point out that the IDs
were assessed independently, so any anomalies in the interactions
between them would not necessarily be picked up, although this is
common across many methods tested.

Wasicek and Weimerskirck [42] considered options for detect-
ing chip tuning. This involves an attacker deliberately changing
the software or parameters of an ECU, or adding new hardware
that acts in an abnormal manner. The authors chose three fea-
tures, speed, RPM and torque, which they felt would characterise
an engine’s power behaviour in different traffic situations. Data
was collected from simulated CAN readings from the TORCS rac-
ing simulator. Vectors comprised mean value, standard deviation,
variance, skewness and kurtosis for the features for a time period
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and for a shifted time period. These were recorded for each of the
three features, giving 30 input values. Including a time-shift period,
they propose, would reduce the impact of any noise in the data.
The training vectors were fed into a bottleneck artificial neural
network, trained using back-propagation. The outputs from the
neural network were combined using a Root-Mean-Square function
to generate an anomaly score. Although they found some success
in that the true positive rate was higher than the false positive rate,
the authors concluded that there was room for improvement, a con-
clusion borne out in the close proximity of their presented Receiver
Operating Characteristic curves to the random guess curve.

7 RESEARCH AND DEVELOPMENT
IMPLICATIONS

The development of a viable CAN IDS will require trade-off choices
with regard to the detection methods chosen. Signature based meth-
ods that offer the lowest rate of false positives, require the careful
and comprehensive encoding of the attack signatures, which are still
emerging. They have a higher need for frequent updating, which
is potentially problematical for the dispersed and varied CAN in-
stances. Anomaly detection methods are prone to higher levels of
false decisions, but might capture unforeseen attacks and require
fewer updates. They also seem more attuned to the limited CAN
packet information available to the researcher and IDS developer.

ML based anomaly detection might afford a means to adapt in
some situations, though even in these occasional updates will be
inevitable. The frequency, content andmagnitude of updating needs
researching, in addition to the options for its implementation. For
example, it should be established whether CAN traffic could be
regarded as stationary over months or years, and if it is not, what
changes might be expected. If the IDS is implemented in situ, on an
ECU or on a CAN gateway, processing capacity is likely to be too
small to exploit ML retraining which might be useful occasionally.
Dedicated ML GPUs might be considered here, though could be
too expensive. It is likely, therefore that algorithm training and
updating would be done centrally, and distributed to the car’s IDS
via some over-the-air mechanism.

Given safety-criticality and legal impacts of driving decisions,
the decisions of the CAN IDS are likely to have important ramifica-
tions. Retraining in methods such as ML, as well as system updates,
pose a challenge for repeatability since it means their parameters
and decision paths might not be static. Reliable and secure check-
pointing or logging of decisions and parameters, will probably be
needed if updates are made.

An IDS could present a complex decision path, particularly with
ML, which might employ complex calculations and hidden layers.
Explainability, and hence trust, is important where the driver has
to act on the decision of the IDS, or might even call the decision’s
validity into question. Likewise developers, as well as the designers
of any interfacing systems (such as automated responses), will
also need to understand the reasons of each detection decision.
Perhaps useful here are methods such as the open source package
LIME [31], which seek to uncover and clarify the decision structure.
Though of course, such additions have overheads and might add
extra vulnerabilities.

Many of the discussed studies considered methods that would be
used in specific attacks, so it is likely an IDS would need to employ
multiple methods to cover the range of potential attacks. Taylor,
Leblanc and Japkowicz [37] consider that CAN anomaly detection
will require a number of methods, such as frequency-based detec-
tors, in addition to their studied neural network methods. Similarly,
Mutter, Groll and Freiling [27] propose eight detectors covering
the legitimacy of the packet and its structure; its plausibility, based
on data from other packets or earlier broadcasts; its frequency, and
even its consistency with data from sources external to the CAN
network. Attacks that change the frequency of packets, might be
the most straightforward to contemplate. However, attacks that
involve replacing legitimate packets with malicious ones, or forging
packets that usually only broadcast in response to an event, are
more challenging [35]. These might be detected through anomalies
in the payload (such as the methods represented in the Payload
column in Table 2), or some measurable change resulting from the
properties of the masquerading ECU.

The generation of labelled data for training and testing is another
hurdle to be overcome. Some of the studies fabricated data by ma-
nipulating extracted CAN logs (e.g. [37, 40]), though these might be
less realistic and miss knock-on effects of the attack, such as packets
usurping lower ID packets in chain. Unsurprisingly given the risks
and costs, very few studies used data from attacks to actual cars.
Perhaps the most suitable option (adopted by a few of the studies,
e.g. [18, 42]) is to use simulators, such as the testbed proposed by
[9], which could provide a set of standardised benchmark tests.

8 CONCLUDING REMARKS
A range of analysis methods have been proposed for detecting
intrusions on the CAN. These are targeted at specific attacks, con-
sequently an IDS might need to adopt an ensemble of them to cover
the likely range of attacks.

Methods for implementing, managing and updating the IDS
have received less research coverage. These will be impacted by the
analysis methods chosen, and will need careful consideration given
the constraints and unpredictabilities of automotive lifecycles and
usage. We hope the issues outlined in this paper will spark more
debate in this area. The safety critical nature of driving suggests,
also, that trust, clarity and auditing need consideration. Also to be
resolved are the problems of acquiring representative attack data.
This requires continued, comprehensive research into probable
attack scenarios, as well as methods to generate realistic training
and test data.
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