【MapReduce】基础案例 ---- CombineTextInputFormat切片

本文详细介绍了CombineTextInputFormat在处理小文件时的切片机制,通过案例演示如何将大量小文件合并到单个切片,提高MapReduce任务效率。讨论了不同虚拟存储切片大小对任务划分的影响,以及其在Mapper和Reducer中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



CombineTextInputFormat切片

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理

● CombineTextInputFormat切片机制

生成切片过程包括:虚拟存储过程和切片过程二部分

1)虚拟存储过程:

  • 将输入目录下所有文件大小依次和设置的setMaxInputSplitSize值比较如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件平均分成2个虚拟存储块(防止出现太小切片)

    例如:
    setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。
    剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件平均切分成(2.01M和2.01M)两个文件。
    

虚拟存储切片最大值设置 :CombineTextInputFormat.setMaxInputSplitSize(job,4194304); // 4M
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。

(2)切片过程:

(a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。
(b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
(c)测试举例:
    有4个小文件大小分别为1.7M、5.1M、3.4M以及6.8M。
    这四个小文件,则虚拟存储之后形成6个文件块,大小分别为:1.7M,(2.55M、2.55M),3.4M以及(3.4M、3.4M)
    最终会形成3个切片,大小分别为:(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M

在这里插入图片描述
返回顶部


● CombineTextInputFormat案例

1. 需求

将输入的大量小文件合并成一个切片统一处理。

(1)输入  ---- 数据 准备4个小文件
(2)期望  ---- 期望一个切片处理4个文件

在这里插入图片描述

2. 编写代码运行
Mapper端
  • 对合并后每个切片的数据进行初步处理
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;

public class wcm extends Mapper <LongWritable,Text,Text, IntWritable> {
    Text k = new Text();
    IntWritable v = new IntWritable(1);
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] words = line.split(" ");
        for (String word:words){
            k.set(word);
            context.write(k,v);
        }
    }
}
Reducer端
  • 对Mapper端传输的数据进行聚合统计
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;

public class wcr extends Reducer<Text, IntWritable, Text, IntWritable> {

    IntWritable v = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable value : values) {
            sum += value.get();
        }
        v.set(sum);
        context.write(key,v);
    }
}
Driver端
  • 默认使用TextInputFormat.class的切片机制,按照单个文件进行切片处理,由于每个数据集文件大小没超过128M,所以每个文件切一片,共四片,所以开启4个MapTask运行处理。
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class wcd {
    public static void main(String[] args) {
        Configuration conf = new Configuration();
        Job job = null;
        try {
            // 1.获取job对象
            job = Job.getInstance(conf);
            // 2.类的关联
            job.setMapperClass(wcm.class);
            job.setReducerClass(wcr.class);
            job.setJarByClass(wcd.class);
            // 3.定义M、R阶段输出数据类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            // 4.指定输入输出路径
            FileInputFormat.setInputPaths(job,new Path("G:\\Projects\\IdeaProject-C\\MapReduce\\src\\main\\java\\第三章_MR框架原理\\combinetextinputformat\\"));
            FileOutputFormat.setOutputPath(job,new Path("G:\\Projects\\IdeaProject-C\\MapReduce\\src\\main\\java\\第三章_MR框架原理\\output"));
            // 5.提交job
            job.waitForCompletion(true);
        } catch (Exception e){
            e.printStackTrace();
        }
    }
}

在这里插入图片描述

  • 驱动类中添加代码如下:
// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
//虚拟存储切片最大值设置4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);

当设置CombineTextInputFormat.class,采用CombineTextInputFormat的切片机制,并且设置虚拟存储切片最大值为4M,将每个文件大小与4M进行比较,显然变成了3个切片,对小文件进行了合并~
在这里插入图片描述

  • 驱动中添加代码如下:
// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
//虚拟存储切片最大值设置20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);

当虚拟存储切片最大值设置20M,显然变成了1个切片
在这里插入图片描述

返回顶部


● 补充说明

假如设置的虚拟存储切片最大值为2M,会出现一个问题,就是在文件大小与这个最大的值进行比较的时候,会出现大于两倍的情况(当然按道理实际中出现的概率很低,纯属本人在这里脑子里冒了个泡),出于好奇我重新设置了它的最大值,如下代码所示:

CombineTextInputFormat.setMaxInputSplitSize(job, 2097152);

首先来看一下结果:
在这里插入图片描述
结果显示的是6个切片,有点意思,然后我进行了一波分析,如果有错,可以在评论区指出~

在这里插入图片描述
个人理解为当大于2倍最大值的时候,会先提取一块最大值大小的数据,再将剩余的继续判断,如此往复。最终切片合并的时候也是与最大值进行比较,如果大于最大值,独自分为一个切片;否则与下一个合并直到大于最大值作为一个切片为止。

图片更正:
在这里插入图片描述

感谢博主:东大梅西

返回顶部


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骑着蜗牛ひ追导弹'

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值