【斯坦福公开课-机器学习】1.机器学习的动机和应用(吴恩达 Andrew Ng)

本课程介绍了机器学习的基本概念,包括非正式和正式的机器学习定义,强调了监督学习的应用,如回归和分类问题。此外,还提到了课程所需的先修知识和资源,如线性代数、概率统计和编程工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0三个目标

  1. 理解到机器学习的令人兴奋的地方。
  2. 都能够应用最新用机器学习算法到你感兴趣的任何问题中。
  3. 完成这门课后还对机器学习的研究继续感兴趣。

0先修课程要求

  • 计算机科学的基本知识,比如大O,诸如队列、栈、二叉树的数据结构等。
  • 高等数学,各种积分运算等。
  • 线性代数的知识,比如矩阵、向量、逆矩阵及其运算等。
  • 概率统计的知识,随机变量、期望、方差等。

基本工具

MATLAB、Octave。
##基本资源

1-网址

http://cs229.stanford.edu

2-邮箱

[email protected]

3-本系列课程链接

http://open.163.com/special/opencourse/machinelearning.html

1机器学习的定义

1-1非正式定义

在一直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域。

这里写图片描述

1-2正式的定义

对于一个计算机程序来说,给它一个任务T和一个性能测量方法P,如果在经验E的影响下,P对T的测量结果得到了改进,那么就说该程序从E中学习。

这里写图片描述

2监督学习(Supervised Learning)

监督学习:从给定的训练数据集中学习出一个函数或称

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值