文章目录
0三个目标
- 理解到机器学习的令人兴奋的地方。
- 都能够应用最新用机器学习算法到你感兴趣的任何问题中。
- 完成这门课后还对机器学习的研究继续感兴趣。
0先修课程要求
- 计算机科学的基本知识,比如大O,诸如队列、栈、二叉树的数据结构等。
- 高等数学,各种积分运算等。
- 线性代数的知识,比如矩阵、向量、逆矩阵及其运算等。
- 概率统计的知识,随机变量、期望、方差等。
基本工具
MATLAB、Octave。
##基本资源
1-网址
http://cs229.stanford.edu
2-邮箱
3-本系列课程链接
http://open.163.com/special/opencourse/machinelearning.html
1机器学习的定义
1-1非正式定义
在一直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域。
1-2正式的定义
对于一个计算机程序来说,给它一个任务T和一个性能测量方法P,如果在经验E的影响下,P对T的测量结果得到了改进,那么就说该程序从E中学习。
2监督学习(Supervised Learning)
监督学习:从给定的训练数据集中学习出一个函数或称