GPU端到端目标检测YOLOV3全过程(上)
Basic Parameters:
Video: mp4, webM, avi
Picture: jpg, png, gif, bmp
Text: doc, html, txt, pdf, excel
Video File Size: not more
than 10GB
batch=16, subdivisions=1
Resolution: 416 * 416, 320 * 320.
Frame: 45f/s with 320 * 320. At 320 ×
320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times
faster.
AI Framework:TensorFlow,
Pytorch, Mxnet, Caffe
Programming Lanuage: Python/C/C++/Java
Accept:
application/json, text/plain, /
Accept-Language:
en-US, en;
Files Input Parameters of Test Model : .model,.weight
Files Input Parameters of Train Model : Filename,
Path, Resolution,…
Files Output Parameters of Train Model : .model,.weight
Files Output Parameters of Test Model : Class
Number,Class Name,mAP value
Hardware: VGA,
DVI, HDMI, DP, SDI, BNC, WIFI, Bluetooth, USB, CAN, Socket, PCIE, SD Card,
Serial Port, Clock Time, SPI, Uart, I2C/I2S, GPIO, Touch Ctrl, LCD, LED, EMMC,
SATA, Audio ADC
Dependency Library: v4l2(Video for linux2),ffmpeg,VLC media player,opencv,
CUDA,cudann,Tensorflow,Pytorch,Mxnet,Caffe,Ubuntu,
darknet,udp/tcp,H264、AAC,rtmp、rtp/rtcp,ffmpeg、x264、
WebRTC、GStreamer,NEON、OpenCL、OpenGL ES,