GPU端到端目标检测YOLOV3全过程(上)

本文详细介绍了在GPU上实现YOLOV3目标检测的全过程,涉及基本参数设置,如分辨率、帧率、AI框架选择,以及依赖的硬件和软件库,包括TensorFlow、Pytorch、CUDA等。此外,还列举了多种图像处理和深度学习模型,如ResNet、SegNet和GAN,并探讨了目标检测常用的数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPU端到端目标检测YOLOV3全过程(上)

Basic Parameters:

Video: mp4, webM, avi
Picture: jpg, png, gif, bmp
Text: doc, html, txt, pdf, excel
Video File Size: not more
than 10GB
batch=16, subdivisions=1
Resolution: 416 * 416, 320 * 320.
Frame: 45f/s with 320 * 320. At 320 ×
320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times
faster.
AI Framework:TensorFlow,
Pytorch, Mxnet, Caffe
Programming Lanuage: Python/C/C++/Java
Accept:
application/json, text/plain, /
Accept-Language:
en-US, en;
Files Input Parameters of Test Model : .model,.weight
Files Input Parameters of Train Model : Filename,
Path, Resolution,…
Files Output Parameters of Train Model : .model,.weight
Files Output Parameters of Test Model : Class
Number,Class Name,mAP value
Hardware: VGA,
DVI, HDMI, DP, SDI, BNC, WIFI, Bluetooth, USB, CAN, Socket, PCIE, SD Card,
Serial Port, Clock Time, SPI, Uart, I2C/I2S, GPIO, Touch Ctrl, LCD, LED, EMMC,
SATA, Audio ADC
Dependency Library: v4l2(Video for linux2),ffmpeg,VLC media player,opencv,
CUDA,cudann,Tensorflow,Pytorch,Mxnet,Caffe,Ubuntu,
darknet,udp/tcp,H264、AAC,rtmp、rtp/rtcp,ffmpeg、x264、
WebRTC、GStreamer,NEON、OpenCL、OpenGL ES,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值