MindSpore:自动微分

MindSpore是一款全场景AI框架,致力于降低AI开发门槛,提供自动微分、自动并行等功能。它采用Source-to-Source自动微分,支持动态和静态图模式,以及灵活的控制流结构,实现模型训练和推理的高性能。此外,MindSpore支持自动并行训练,简化分布式并行操作,同时具备丰富的数据预处理和可视化工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MindSpore:自动微分
作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow、PyTorch、PaddlePaddle 等流行深度学习框架对标,旨在大幅度降低 AI 应用开发门槛,让人工智能无处不在。
MindSpore 是一款支持端、边、云独立/协同的统一训练和推理框架。希望通过这款完整的软件堆栈,实现一次性算子开发、一致的开发和调试体验,以此帮助开发者实现一次开发,应用在所有设备上平滑迁移的能力。
原生支持 AI 芯片,全场景一致的开发体验——除了这些早已知晓的强大之处外,还着重展示了 MindSpore 的三大创新能力:新编程范式,执行模式和协作方式。
在这里插入图片描述

MindSpore 首个开源版本为 0.1.0-alpha 版,主要由自动微分、自动并行、数据处理等功能构成。MindSpore 具备开发算法即代码、运行高效、部署态灵活的特点,其核心分为三层:从下往上分别是后端运行时、计算图引擎及前端表示层。
MindSpore 开源社区:https://www.mindspore.cn/
MindSpore 代码:https://gitee.com/mindspore
从整体上来说,MindSpore 搭建神经网络会以「单元」为中心,其中单元是张量和运算操作的集合。从输入张量开始,MindSpore 会提供各种算子以构造一个「单元」,最后模型封装这个单元就可以用来训练、推理了。
在这里插入图片描述

MindSpore 的整体结构,从后端的硬件支持到前端 API,中间会涉及多种优化与特性。例如不采用计算图的自动微分、自动并行与优化计算过程等等。
MindSpore 最大的特点在于,其采用了业界最新的 Source-t

今年的华为开发者大会 HDC 2020 上,除了**昇腾、鲲鹏等自研芯片硬件平台**之外,最令人期待的就是**深度学习框架 MindSpore 的开源**了。今天上午,华为 MindSpore **首席科学家陈雷**在活动中宣布这款产品正式开源,我们终于可以在开放平台上一睹它的真面目。 本文是根据机器之心报道的MindSpore 的开源介绍而整理的.md笔记 作为一款支持**端、边、云独立/协同的统一训练和推理框架,华为希望通过这款完整的软件堆栈,实现**一次性算子开发、一致的开发和调试体验**,以此帮助开发者实现**一次开发,应用在所有设备上平滑迁移**的能力。 三大创新能力:新编程范式,执行模式和协作方式 由**自动微分自动并行、数据处理**等功能构成 开发算法即代码、运行高效、部署态灵活**的**特点**, 三层核心:从下往上分别是**后端运行时、计算图引擎及前端表示层**。 最大特点:采用了业界最新的 **Source-to-Source 自动微分**,它能**利用编译器及编程语言的底层技术**,进一步**优化以支持更好的微分表达**。主流深度学习框架中主要有**三种自动微分技术,才用的不是静态计算图、动态计算图,而是基于**源码**转换:该技术源以**函数式编程框架**为基础,以**即时编译(JIT)**的方式**在中间表达(编译过程中程序的表达形式)上做自动微分变换**,支持**复杂控制流场景、高阶函数和闭包**。 MindSpore 主要概念就是张量、算子、单元和模型 其代码有两个比较突出的亮点:计算图的调整,动态图与静态图可以一行代码切换;自动并行特性,我们写的串行代码,只需要多加一行就能完成自动并行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值