一、Lama Cleaner核心功能与技术架构
1.1 技术原理解析
Lama Cleaner基于LaMa算法(Large Mask Inpainting)构建,该算法采用傅里叶卷积神经网络架构,能够处理高达1024x1024像素的大面积修复任务。其核心优势在于:
- 多尺度特征融合:同时提取图像的全局语义和局部纹理特征
- 边缘保持机制:通过边缘敏感损失函数优化修复区域边界
- 动态掩码处理:支持自定义掩码形状和透明度调整
2025年最新版本新增了以下功能:
- ControlNet集成:支持Canny边缘控制和Depth深度控制
- 多模型并行处理:可同时加载LaMa、MAT、ZITS三种模型进行协同修复
- 超分辨率增强:内置ESRGAN 4x模型实现修复后图像锐化