引言:数据困境与破局之道
在人工智能领域,大模型的发展正呈现出指数级增长态势。从GPT-3到LLaMA,模型参数量从百亿级迈向万亿级,性能也随之实现跨越式提升。然而,与模型规模扩张相伴的是愈发严峻的数据困境——优质标注数据的稀缺性已成为制约模型发展的关键瓶颈。传统数据采集方式面临成本高昂、标注效率低下、隐私保护难等多重挑战,尤其在医疗、金融等敏感领域,数据获取更是难上加难。
正是在这样的背景下,"数据生成技术"成为破局的核心路径。从Self-Instruct方法的提出到Alpaca模型的惊艳亮相,从图像数据增强的经典技术到生成对抗网络(GAN)的突破性应用,AI领域正在上演一场"无中生有"的数据革命。本文将系统整合模型工程中的数据生成技术,从理论框架到实践案例,全面解析如何让训练数据实现从0到1的魔法创造,为大模型训练开辟全新路径。
一、模型工程VS提示语工程:两种知识注入范式
在探讨数据生成技术之前,首先需要明确模型工程与提示语工程的本质区别——这两种技术代表了AI系统获取知识的不同范式,理解它们的差异是掌握数据生成技术的基础。
1.1 范式差异:参数学习VS上下文学习
-
提示语工程:通过精心设计的上下文示例,在不改变模型参数的前提下,引导模型通过"上下文学习"(In-Context Learn