【AI云原生】3、AI Agent四大推理模式全解析:从CoT到ReWOO的实战指南

在这里插入图片描述

引言:推理模式是Agent的"思维操作系统"

当AI Agent面对"规划从北京到上海的3天商务行程,预算8000元,需包含2场会议"这样的复杂任务时,它如何思考?是直接调用工具查机票,还是先拆解任务步骤?是出错后重新尝试,还是能从错误中学习?这些"思考方式"的差异,源于Agent采用的推理模式——它们是Agent的"思维操作系统",决定了智能体解决问题的效率、准确性和进化能力。

从让模型"分步解题"的思维链(CoT),到"边思考边行动"的ReAct,再到能"自我反思"的Reflexion,以及"并行高效执行"的ReWOO,AI Agent的推理模式已形成完整技术体系。这些模式并非相互替代,而是各有擅长:CoT擅长复杂逻辑推理,ReAct擅长工具交互,Reflexion擅长持续进化,ReWOO擅长高效并行任务。

本文将系统解析这四大推理模式的核心原理、实战代码、适用场景,并通过可视化图表对比其优劣,帮助读者掌握"为不同任务选择合适推理模式"的能力——这是构建高效AI Agent的关键前提。

一、思维链(Chain-of-Thought, CoT):让Agent"想清楚再做"

1.1 核心思想:显式拆解推理步骤

思维链(CoT)的本质是模仿人类"分步思考"的认知过程,让Agent在解决复杂问题时,先输出中间推理步骤,再得出最终结论。它解决了传统大模型"跳步推理"导致的错误——例如计算"18÷(3×2)"时,直接输出"3"可能是错的,但分步写"Step1:先算3×2=6;Step2:再算18÷6=3"则能大幅降低错误率。

# 传统输出(无CoT)
输入:1+2+3+4-5-6=?
输出:-1

# CoT输出(显式步骤)
输入:1+2+3+4-5-6=?
输出:
  Step1:先计算加法部分:1+2=3;3+3=6;6+4=10
  Step2:再计算减法部分:10-5=5;5-6=-1
  最终答案:-1

1.2 技术实现:用Prompt诱导分步推理

CoT无需复杂架构,主要通过提示工程触发。最经典的提示词是"Let’s think step by step"(让我们一步步思考),中文可使用"请分步推理"。

基础Prompt模板:
def cot_prompt(question):
    return f"""
    问题:{
     
     question}
    请按照以下步骤解决:
    1. 拆解问题核心要素
    2. 逐步推理每个子问题
    3. 整合结果得出答案
    分步推理:
    """

# 示例:解决逻辑谜题
question = "甲、乙、丙三人中,一人是医生,一人是教师,一人是工程师。已知:甲不是医生,乙不是教师,丙不是工程师。请问谁是医生?"
prompt = cot_prompt(question)
response = llm.generate(prompt)  # 调用大模型生成推理步骤
输出结果(CoT推理过程):
分步推理:
1. 核心要素:三人职业分别为医生、教师、工程师,需根据排除条件匹配。
2. 子问题1:甲不是医生 → 甲可能是教师或工程师。
3. 子问题2:乙不是教师 → 乙可能是医生或工程师。
4. 子问题3:丙不是工程师 → 丙可能是医生或教师。
5. 假设丙是医生:则丙的职业确定,剩余职业为教师和工程师。
   - 甲不能是医生(已满足),可分配教师;
   - 乙不能是教师,只能分配工程师(符合条件)。
6. 验证是否矛盾:无冲突,因此假设成立。
最终答案:丙是医生。

1.3 进化变体:应对不同场景的CoT增强版

变体名称 核心改进 适用场景 示例Prompt
Zero-Shot CoT 无需示例,仅用指令触发分步推理 简单逻辑/数学问题 “请分步解决这个问题”
Few-Shot CoT 提供少量带步骤的示例,让模型模仿 复杂推理问题(如几何证明) “示例1:…(带步骤)
你的问题:…”
Self-Consistency 生成多条推理路径,投票选择最佳答案 高风险决策(如医疗诊断) “生成3种解题思路,最终选择最合理的”
Least-to-Most 先解决简单子问题,再逐步解决复杂问题 多层级问题(如编程调试) “先分析每个函数的作用,再排查调用错误”

1.4 优势与局限

优势:
  • 提升复杂问题准确率:在数学推理、逻辑谜题等任务中,准确率可提升30%-50%;
  • 推理过程可解释:显式步骤让人类能追溯Agent的"思考轨迹",便于纠错;
  • 实现简单:无需修改模型,仅通过Prompt即可触发。
局限:
  • 无法验证结果:步骤正确不代表结论正确(如计算错误);
  • 不支持工具交互:纯推理,无法调用外部工具获取实时信息;
  • 增加Token消耗:步骤描述会占用更多上下文空间。

1.5 适用场景

  • 数学计算:如方程求解、微积分运算(需分步展示推导过程);
  • 逻辑推理:如谜题、案件分析(需拆解条件链);
  • 规划类任务:如会议排期(需考虑时间冲突等约束)。

二、ReAct(Reason+Act):让Agent"边想边做"

2.1 核心突破:推理与行动的闭环循环

ReAct的革命性在于将"推理(Reason)"与"行动(Act)"绑定为闭环,让Agent在解决问题时,能根据推理结果调用工具,再根据工具返回的观察结果调整推理——类似人类"思考→尝试→观察→再思考"的过程。

例如,当用户问"今天北京的PM2.5指数是多少,适合户外活动吗?",ReAct的流程是:
Thought(需要查北京PM2.5)→ Act(调用空气质量API)→ Observation(返回指数80)→ Thought(80属于良,适合户外活动)→ 输出答案

2.2 工作流程:四步循环机制

graph TD
    A[用户问题] --> B[Thought<br>(推理下一步行动)]
    B --> C{需要工具?}
    C -- 是 --> D[Act<br>(调用工具,如API)]
    D --> E[Observation<br>(工具返回结果)]
    E --> B
    C -- 否 --> F[输出最终答案]
步骤详解:
  1. Thought(推理):分析问题,决定是否需要调用工具、调用什么工具;
  2. Act(行动):若需要工具,生成结构化调用指令(如函数名+参数);
  3. Observation(观察):执行工具调用,获取返回结果(如API数据);
  4. 循环迭代:将观察结果纳入上下文,重复Thought步骤,直至可直接回答。

2.3 代码实现:ReAct循环的核心逻辑

以下是用Python实现的ReAct循环伪代码,以"查询天气并判断是否适合野餐"为例:

class ReActAgent:
    def __init__(self, tools):
        self.tools = tools  # 工具列表,如天气查询工具
        self.history = []  # 存储(Thought, Act, Observation)轨迹

    def run(self, question, max_steps=5):
        for _ in range(max_steps):  # 限制最大步数,避免无限循环
            # Step 1: 生成Thought(推理下一步)
            thought = self.generate_thought(question)
            self.history.append({
   
   "type"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值