概述
NumPy(Numerical Python)是Python科学计算的基石,为数据分析和机器学习提供了强大的多维数组操作能力。本文全面解析NumPy的核心数据结构ndarray,从基础概念到高级操作,通过丰富的代码示例和可视化图表,帮助读者彻底掌握这一科学计算的核心工具。
一、NumPy简介与核心概念
1.1 为什么需要NumPy?
在NumPy出现之前,Python开发者主要使用内置列表(list)进行数值计算,但这存在两个主要问题:
- 存储效率低:列表中的元素可以是任何对象,在内存中是分散存储的
- 计算效率低:数学运算需要编写循环,在Python解释器层级执行,速度慢
NumPy的ndarray完美解决了这些问题:
- 同构数据类型:数组中所有元素必须是相同类型
- 连续内存块:数据存储在连续的内存块中
- 向量化操作:运算通过预编译的C代码在数组级别上进行,无需Python循环
1.2 NumPy与Python列表对比
chart
title "NumPy数组 vs Python列表性能对比"
"内存效率" : 80
"计算速度" : 90
"功能丰富度" : 85
"Python列表内存效率" : 30
"Python列表计算速度" : 20
"Python列表功能丰富度" : 40
特性 | NumPy数组 | Python列表 |
---|---|---|
内存使用 | 高效,连续存储 | 低效,分散存储 |
计算速度 | 快,向量化操作 | 慢,需要循环 |
数据类型 | 必须一致 | 可混合 |
功能丰富度 | 丰富的数学函数 | 基本操作 |
二、核心数据结构:ndarray
2.1 创建数组的多种方法
import numpy as np
# 1. 从Python列表/元组创建
arr1 = np.array([1, 2, 3, 4]) # 一维数组
arr2 = np.array([[1, 2], [3, 4]]) # 二维数组
# 2. 使用内置函数创建特殊数组
zeros = np.zeros((3, 4)) # 创建全为0的3x4数组
ones = np.ones((2, 3)) # 创建全为1的2x3数组
full_arr = np.full((2, 2), 99) # 创建全为99的2x2数组
# 3. 创建范围数组
range_arr = np.arange(0, 10, 2) # 类似range,创建 [0, 2, 4, 6, 8]
linspace_arr = np.linspace(0, 1, 5) # 在0到1之间均匀创建5个数 [0., 0.25, 0.5, 0.75, 1.]
# 4. 创建特殊矩阵
identity_matrix = np.eye(3) # 创建3x3的单位矩阵
# 5. 创建随机数组
uniform_random = np.random.rand(2, 3) # 创建2x3的数组,元素来自[0,1)的均匀分布
normal_random = np.random.randn(2, 3) # 创建2x3的数组,元素来自标准正态分布
2.2 数组的关键属性
# 创建示例数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print("数组内容:")
print(arr)
"""
输出:
[[1 2 3]
[4 5 6]]
"""
# 查看数组属性
print("维度数 (ndim):", arr.ndim) # 2 (这是一个二维数组)
print("形状 (shape):", arr.shape) # (2, 3) (2行3列)
print("元素总数 (size):", arr.size) # 6 (2 * 3 = 6)
print("数据类型 (dtype):", arr.dtype) # int64 (默认是64位整数)
print("元素字节数 (itemsize):", arr.itemsize) # 8 (因为int64是8字节)
print("总字节数 (nbytes):", arr.nbytes) # 48 (8字节 * 6个元素)
print("步长 (strides):", arr.strides) # (24, 8)
strides详解:
- 步长表示为了遍历数组,在每个维度上需要步进的字节数
- (24, 8) 表示:
- 要走到下一行(axis=0),需要步进3个元素(3×8=24字节)
- 要走到下一列(axis=1),需要步进1个元素(1×8=8字节)
2.3 数据类型(dtype)系统
NumPy提供了丰富的数值类型,这是其高效和精确计算的基础:
# 创建时指定数据类型
float_arr = np.array([1, 2, 3], dtype=np.float32) # 32位浮点数
int_arr = np.array([1, 2, 3], dtype=np.int8) # 8位整数
complex_arr = np.array([1, 2, 3], dtype=np.complex64) # 64位复数
bool_arr = np.array([True, False]) # 布尔型
# 类型转换
arr = np.array([1.2, 3.5, 5.7])
arr_int = arr.astype(np.int32) # 转换为整数,会截断小数部分 -