【PyTorch实战:NumPy】3、NumPy完全指南:从基础到高级,掌握科学计算的核心

在这里插入图片描述

概述

NumPy(Numerical Python)是Python科学计算的基石,为数据分析和机器学习提供了强大的多维数组操作能力。本文全面解析NumPy的核心数据结构ndarray,从基础概念到高级操作,通过丰富的代码示例和可视化图表,帮助读者彻底掌握这一科学计算的核心工具。

一、NumPy简介与核心概念

1.1 为什么需要NumPy?

在NumPy出现之前,Python开发者主要使用内置列表(list)进行数值计算,但这存在两个主要问题:

  1. 存储效率低:列表中的元素可以是任何对象,在内存中是分散存储的
  2. 计算效率低:数学运算需要编写循环,在Python解释器层级执行,速度慢

NumPy的ndarray完美解决了这些问题:

  • 同构数据类型:数组中所有元素必须是相同类型
  • 连续内存块:数据存储在连续的内存块中
  • 向量化操作:运算通过预编译的C代码在数组级别上进行,无需Python循环

1.2 NumPy与Python列表对比

chart
    title "NumPy数组 vs Python列表性能对比"
    "内存效率" : 80
    "计算速度" : 90
    "功能丰富度" : 85
    "Python列表内存效率" : 30
    "Python列表计算速度" : 20
    "Python列表功能丰富度" : 40
特性 NumPy数组 Python列表
内存使用 高效,连续存储 低效,分散存储
计算速度 快,向量化操作 慢,需要循环
数据类型 必须一致 可混合
功能丰富度 丰富的数学函数 基本操作

二、核心数据结构:ndarray

2.1 创建数组的多种方法

import numpy as np

# 1. 从Python列表/元组创建
arr1 = np.array([1, 2, 3, 4])          # 一维数组
arr2 = np.array([[1, 2], [3, 4]])      # 二维数组

# 2. 使用内置函数创建特殊数组
zeros = np.zeros((3, 4))        # 创建全为0的3x4数组
ones = np.ones((2, 3))          # 创建全为1的2x3数组
full_arr = np.full((2, 2), 99)  # 创建全为99的2x2数组

# 3. 创建范围数组
range_arr = np.arange(0, 10, 2)  # 类似range,创建 [0, 2, 4, 6, 8]
linspace_arr = np.linspace(0, 1, 5)  # 在0到1之间均匀创建5个数 [0., 0.25, 0.5, 0.75, 1.]

# 4. 创建特殊矩阵
identity_matrix = np.eye(3)     # 创建3x3的单位矩阵

# 5. 创建随机数组
uniform_random = np.random.rand(2, 3)  # 创建2x3的数组,元素来自[0,1)的均匀分布
normal_random = np.random.randn(2, 3)  # 创建2x3的数组,元素来自标准正态分布

2.2 数组的关键属性

# 创建示例数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print("数组内容:")
print(arr)
"""
输出:
[[1 2 3]
 [4 5 6]]
"""

# 查看数组属性
print("维度数 (ndim):", arr.ndim)        # 2 (这是一个二维数组)
print("形状 (shape):", arr.shape)        # (2, 3) (2行3列)
print("元素总数 (size):", arr.size)      # 6 (2 * 3 = 6)
print("数据类型 (dtype):", arr.dtype)    # int64 (默认是64位整数)
print("元素字节数 (itemsize):", arr.itemsize)  # 8 (因为int64是8字节)
print("总字节数 (nbytes):", arr.nbytes)  # 48 (8字节 * 6个元素)
print("步长 (strides):", arr.strides)    # (24, 8) 

strides详解

  • 步长表示为了遍历数组,在每个维度上需要步进的字节数
  • (24, 8) 表示:
    • 要走到下一行(axis=0),需要步进3个元素(3×8=24字节)
    • 要走到下一列(axis=1),需要步进1个元素(1×8=8字节)

2.3 数据类型(dtype)系统

NumPy提供了丰富的数值类型,这是其高效和精确计算的基础:

# 创建时指定数据类型
float_arr = np.array([1, 2, 3], dtype=np.float32)  # 32位浮点数
int_arr = np.array([1, 2, 3], dtype=np.int8)       # 8位整数
complex_arr = np.array([1, 2, 3], dtype=np.complex64)  # 64位复数
bool_arr = np.array([True, False])                 # 布尔型

# 类型转换
arr = np.array([1.2, 3.5, 5.7])
arr_int = arr.astype(np.int32)  # 转换为整数,会截断小数部分 -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

您的鼓励就是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值