开篇:用“盲人下山”理解优化器的核心价值
如果把深度学习模型训练比作“盲人寻找山谷最低点”(最低点=最小损失):
- 梯度是盲人脚下的“坡度”——告诉TA“哪个方向是下坡”;
- 损失函数是TA手中的“高度计”——告诉TA“当前离最低点还有多远”;
- 优化器(Optimizer) 则是TA的“下山策略”——决定TA“每一步迈多大、要不要借惯性冲过小坡、不同路况怎么调整步伐”。
没有好的优化器,即使知道“下坡方向”(梯度),也可能因“步太大摔下山”(学习率过高)、“步太小走不动”(学习率过低),或“卡在小土坡误以为到终点”(局部最优)。
本文将从“基础梯度下降”到“智能Adam”,用5000字+图解+PyTorch代码,带你掌握所有主流优化器的原理与实战,让你的模型“高效下山”。
第一部分:优化器基础——梯度下降的“三大批量模式”
梯度下降是所有优化器的“基石”,其核心思想是“沿梯度反方向更新参数”。根据“每次计算梯度使用的数据量”,梯度下降可分为批量、随机、小批量三种模式,这是理解后续高级优化器的前提。
1.1 梯度下降的核心原理(数学基础)
优化器的目标是“最小化损失函数 J(θ)J(\theta)J(θ)”(θ\thetaθ 代表所有参数,如权重 www、偏置 bbb),核心公式基于“梯度反方向更新”:
θnew=θold−α⋅∇J(θold)\theta_{\text{new}} = \theta_{\text{old}} - \alpha \cdot \nabla J(\theta_{\text{old}})θnew=θold−α⋅∇J(θold)
- α\alphaα(学习率):控制“步长”,决定每一步迈多大;
- ∇J(θ)\nabla J(\theta)∇J(θ):损失函数对 θ\thetaθ 的梯度,方向是“损失增长最快的方向”,反方向即“损失下降最快的方向”。
通俗理解:盲人知道“往坡度最陡的反方向走(梯度反方向)”,但“每步迈10厘米还是1米(学习率)”“一次看多大范围的路况(数据量)”,就是三种批量模式的区别。
1.2 批量梯度下降(BGD):“总复习后再改错”
(1)核心逻辑
每次更新参数时,使用全部训练数据计算梯度——相当于盲人“走遍整座山测量坡度后,再决定下一步怎么走”。
(2)数学公式
对线性回归任务(hθ(x)=θ0+θ1xh_\theta(x) = \theta_0 + \theta_1xhθ(x)=θ0+θ1x),BGD的参数更新公式为:
θj=θj−α⋅1m∑i=1m(hθ(xi)−yi)xji\theta_j = \theta_j - \alpha \cdot \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i)x_j^iθj=θj−α⋅m1i=1∑m(hθ(xi)−yi)xji
- mmm:训练集总样本数;
- xi,yix^i, y^ixi,yi:第 iii 个样本的输入和真实值。
(3)优缺点与适用场景
维度 | 具体说明 |
---|---|
优点 | 1. 梯度方向“最准确”(基于全量数据,无噪声干扰); 2. 收敛稳定,不易震荡; 3. 理论上能找到全局最优(假设损失函数是凸函数)。 |
缺点 | 1. 计算量大(全量数据矩阵运算,内存占用高); 2. 训练速度慢(需遍历全量数据才能更新一次参数); 3. 无法在线学习(新数据加入需重新计算全量梯度)。 |
适用场景 | 小数据集(样本数<1万)、凸优化问题(如线性回归)、理论研究(验证算法收敛性)。 |
(4)比喻:“期末总复习”
就像学生期末复习时,“先刷完所有章节的题(全量数据),再总结所有错题(计算梯度),最后集中修改学习方法(更新参数)”——方向准但效率低,适合题量少(小数据集)的情况。
1.3 随机梯度下降(SGD):“做一题改一题”
(1)核心逻辑
每次更新参数时,仅使用单个样本计算梯度——相当于盲人“走一步测一次坡度,立刻调整方向”。
(2)数学公式
θj=θj−α⋅(hθ(xi)−yi)xji\theta_j = \theta_j - \alpha \cdot (h_\theta(x^i) - y^i)x_j^iθj=θj−α⋅(hθ(xi)−yi)xji
(去掉了BGD中的“1m\frac{1}{m}m1”,因仅用第 iii 个样本计算梯度)
(3)优缺点与适用场景
维度 | 具体说明 |
---|---|
优点 | 1. 训练速度快(单个样本计算量小,更新频率高); 2. 能在线学习(新样本实时参与更新); 3. 梯度含噪声,可能“冲过局部最优”(如小土坡),更易找到全局最优。 |
缺点 | 1. 梯度方向“噪声大”(单个样本随机性强,方向摇摆); 2. 收敛不稳定(损失曲线震荡剧烈); 3. 可能“错过最优解”(步长太大时,在最低点附近来回震荡)。 |
适用场景 | 大数据集(样本数>10万)、在线学习场景(如实时推荐系统)、需要快速探索参数空间的任务。 |
(4)比喻:“题海战术”
就像学生“做一道数学题就立刻对答案、改错题”——速度快但容易被偏题(噪声样本)带歪思路,导致“知识点掌握不系统”(参数更新震荡)。
1.4 小批量梯度下降(MBGD):“小测验后及时复盘”
(1)核心逻辑
每次更新参数时,使用固定数量的样本(Batch Size)计算梯度——相当于盲人“走30步测一次坡度,调整方向后再走”,是BGD和SGD的“完美平衡”。
(2)数学公式
θj=θj−α⋅1b∑i=1b(hθ(xi)−yi)xji\theta_j = \theta_j - \alpha \cdot \frac{1}{b} \sum_{i=1}^b (h_\theta(x^i) - y^i)x_j^iθj=θj−α⋅b</