2

Occam’s Razor

The PAC model introduced in Chapter 1 defined learning directly in
terms of the predictive power of the hypothesis output by the learning
algorithm. It was possible to apply this measure of success to a learning
algorithm because we made the assumption that the instances are drawn
independently from a fized probability distribution D, and then measured
predictive power with respect to this same distribution.

In this chapter, we consider a rather different definition of learning
that makes no assumptions about how the instances in a labeled sample
are chosen. (We still assume that the labels are generated by a target
concept chosen from a known class.) Instead of measuring the predictive
power of a hypothesis, the new definition judges the hypothesis by how
succinctly it explains the observed data (a labeled sample). The crucial
difference between PAC learning and the new definition is that in PAC
learning, the random sample drawn by the learning algorithm is intended
only as an aid for reaching an accurate model of some external process
(the target concept and distribution), while in the new definition we are
concerned only with the fixed sample before us, and not any external
process.

This new definition will be called Occam learning, because it for-
malizes a principle that was first expounded by the theologian William

32 Chapter 2

of Occam, and which has since become a central doctrine of scientific
methodology. The principle is often referred to as Occam’s Razor to in-
dicate that overly complex scientific theories should be subjected to a
simplifying knife.

If we equate “simplicity” with representational succinctness, then an-
other way to interpret Occam’s principle is that learning is the act of
finding a pattern in the observed data that facilitates a compact repre-
sentation or compression of this data. In our simple concept learning
setting, succinctness is measured by the size of the representation of the
hypothesis concept. Equivalently, we can measure succinctness by the
cardinality of the hypothesis class used by the algorithm, for if this class
is small then a typical hypothesis from the class can be represented by
a short binary string, and if this class is large then a typical hypothesis
must be represented by a long string. Thus an algorithm is an Occam
algorithm if it finds a short hypothesis consistent with the observed data.

Despite its long and illustrious history in the philosophy of science
and its extreme generality, there is something unsatisfying about the
notion of an Occam algorithm. After all, the primary goal of science
(or more generally, of the learning process) is to formulate theories that
accurately predict future observations, not just to succinctly represent
past observations. In this chapter, we will prove that when restricted to
the probabilistic setting of the PAC model, Occam algorithms do indeed
have predictive power. This provides a formal justification of the Occam
principle, albeit in a restricted setting.

Thus, under appropriate conditions, any algorithm that always finds
a succinct hypothesis that is consistent with a given input sample is
automatically a PAC learning algorithm. In addition to the philosophical
interpretation we have just discussed, this reduction of PAC learning
to Occam learning provides a new method of designing PAC learning
algorithms.

Occam’s Razor 33

2.1 Occam Learning and Succinctness

As in Chapter 1, let X = U,>1 X, be the instance space, let C = Up>1C,
be the target concept class, and let H = U,>1H, be the hypothesis
representation class. In this chapter we will assume, unless explicitly
stated otherwise, that the hypothesis representation scheme of H uses a
binary alphabet, and we define size(h) to be the length of the bit string
h. Also, recall that for a concept ¢ € C, size(c) denotes the size of the
smallest representation of ¢ in H.

Let ¢ € C,, denote the target concept. A labeled sample S of cardi-
nality m is a set of pairs:

S ={{(z1,c(z1)),. -y (Tm, c(zm))}-

An Occam algorithm L takes as input a labeled sample S, and outputs
a “short” hypothesis h that is consistent with S. By consistent we mean
that h(z;) = c(z;) for each 7, and by “short” we mean that size(h) is a
sufficiently slowly growing function of n, size(c) and m. This is formalized
in the following definition.

Definition 6 Let a > 0 and 0 < 8 < 1 be constants. L is an (a,f)-
Occam algorithm for C using H if on input a sample S of cardinality
m labeled according to ¢ € C,,, L outputls a hypothesis h € H such that:

o h is consistent with S.

o size(h) < (n - size(c))*mP.

We say that L is an efficient (a, 8)-Occam algorithm if its running time
is bounded by a polynomial in n, m and size(c).

In what sense is the output A of an Occam algorithm succinct? First
let us assume that m >> n, so that the above bound can be effectively

34 Chapter 2

simplified to size(h) < mP for some B < 1. Since the hypothesis h is
consistent with the sample S, h allows us to reconstruct the m labels
c(z1) = h(z1),...,c(xm) = h(zm) given only the unlabeled sequence of
instances @1,...,Z,. Thus the m bits ¢(z1),...,c(zn) have been effec-
tively compressed into a much shorter string h of length at most m?.
Note that the requirement 8 < 1 is quite weak, since a consistent hy-
pothesis of length O(mn) can always be achieved by simply storing the
sample S in a table (at a cost of n + 1 bits per labeled example) and
giving an arbitrary (say negative) answer for instances that are not in
the table. We would certainly not expect such a hypothesis to have any
predictive power.

Let us also observe that even in the case m << m, the shortest con-
sistent hypothesis in H may in fact be the target concept, and so we
must allow size(h) to depend at least linearly on size(c). The definition
of succinctness above is considerably more liberal than this in terms of
the allowed dependence on n, and also allows a generous dependence on
the number of examples m. We will see cases where this makes it easier
to efficiently find a consistent hypothesis — by contrast, computing the
shortest hypothesis consistent with the data is often a computationally
hard problem.

The next theorem, which is the main result of this chapter, states that
any efficient Occam algorithm is also an efficient PAC learning algorithm.

Theorem 2.1 (Occam’s Razor) Let L be an efficient (o, 8)-Occam al-
gorithm for C using H. Let D be the target distribution over the instance
space X, let c € C,, be the target concept, and 0 < €,6 < 1. Then there is
a constant a > 0 such that if L s given as input a random sample S of
m ezamples drawn from EX (¢, D), where m satisfies

mz(11g§+(w)—)

then with probability at least 1 —§ the output h of L satisfies error(h) < e.
Moreover, L runs in time polynomial in n, size(c), 1/e and 1/6.

Occam’s Razor 35

Notice that as 8 tends to 1, the exponent in the bound for m tends
to infinity. This corresponds with our intuition that as the length of the
hypothesis approaches that of the data itself, the predictive power of the
hypothesis is diminishing.

For the applications we give later, it turns out to be most conve-
nient to state and prove Theorem 2.1 in a slightly more general form,
in which we measure representational succinctness by the cardinality of
the hypothesis class rather than by the bit length size(h). We then prove
Theorem 2.1 as a special case. To make this precise, let H, = Upn>1Hnm.
Consider a learning algorithm for C using H that on input a labeled sam-
ple S of cardinality m outputs a hypothesis from H, ,,. The following
theorem shows that if |y, ,,| is small enough, then the hypothesis output
by L has small error with high confidence.

Theorem 2.2 (Occam’s Razor, Cardinality Version) Let C be a concept
class and H a representation class. Let L be an algorithm such that for
any n and any ¢ € C,, if L is gwven as inpul a sample S of m labeled
ezamples of ¢, then L runs in time polynomial in n, m and size(c), and
outputs an h € H,, ,,, that is consistent with S. Then there is a constant
b > 0 such that for any n, any distribution D over X,,, and any target
concept ¢ € Cy, if L is given as input a random sample from EX (¢, D) of
m ezamples, where |Hpm| satisfies

1Og |Hn,m| S bem — log %

(or equivalently, where m satisfies m > (1/be)(log |Hnm| + log(1/6)))
then L is gquaranteed to find a hypothesis h € H,, that with probability at
least 1 — & obeys error(h) < e.

Note that here we do not necessarily claim that L is an efficient PAC
learning algorithm. In order for the theorem to apply, we must (if pos-
sible) pick m large enough so that bem dominates log |, m|. Moreover,
since the running time of L has a polynomial dependence on m, in order

36 Chapter 2

to assert that L is an efficient PAC algorithm, we also have to bound m
by some polynomial in n, size(c), 1/€ and 1/§. The proof of Theorem 2.1
relies on the fact that in the case of an (a, 3)-Occam algorithm, log |H, m|
grows only as m?, and therefore given any e, this is smaller than bem for
a small value of m.

We first give a proof of Theorem 2.2.

Proof: We say that a hypothesis h € H,, ,,, is bad if error(h) > €, where
the error is of course measured with respect to the target concept ¢ and
and the target distribution D. Then by the independence of the random
examples, the probability that a fixed bad hypothesis h is consistent
with a randomly drawn sample of m examples from EX(c,D) is at most
(1 — €)™. Using the union bound, this implies that if H' C H,,, is
the set of all bad hypotheses in H, ,,, then the probability that some
hypothesis in H' is consistent with a random sample of size m is at most
|H'|(1 — €)™. We want this to be at most §; since |H'| < |Hnm| we get a
stronger condition if we solve for |H, . |(1 — €)™ < 4. Taking logarithms,
we obtain log |Hum| < mlog(l/(1 — €)) — log(1/8). Using the fact that
log(1/(1 — €)) = O(¢), we get the statement of the theorem.

[(O(Theorem 2.2)

We now prove Theorem 2.1:

Proof: Let H,, denote the set of all possible hypothesis represen-
tations that the (a,3)-Occam algorithm L might output when given as
input a labeled sample S of cardinality m. Since L is an (a,3)-Occam
algorithm, every such hypothesis has bit length at most (n - size(c))*m?,
thus implying that |Hpm| < 9(n-size(c))*m? By Theorem 2.2, the output
of L has error at most € with confidence at least 1 — § provided

log |Hnm| < bem — log %

Transposing, we want m such that
1
be

m >

1 1
].Og |Hn,m| + E].Og g

Occam’s Razor 37

The above condition can be satisfied by picking m such that both m >
(2/be)log |Hnm| and m > (2/be)log(1/é) hold. Choosing a = 2/b yields
the statement of the theorem. [(O(Theorem 2.1)

2.2 Improving the Sample Size for
Learning Conjunctions

As an easy warm-up to some more interesting applications of Occam’s
Razor, we first return to the problem of PAC learning conjunctions of
boolean literals, and apply Theorem 2.2 to slightly improve the sam-
ple size bound (and therefore the running time bound) of the learning
algorithm we presented for this problem in Section 1.3.

Thus as in Section 1.3, we let X,, = {0,1}". Each a € {0,1}" is
, Ln. Let
C, be the class of conjunctions of literals over 1, ..., z,. Recall that our

interpreted as an assignment to the n boolean variables i, ...

learning algorithm started with a hypothesis that is the conjunction of all
the 2n literals. Given as input a set of m labeled examples, the algorithm
ignored negative examples, and on each positive example (a, 1), the al-
gorithm deleted any literal z such that z = 0 in a. Note that this ensures
that upon receiving the positive example a, the hypothesis is updated
to be consistent with this example. Furthermore, any future deletions
will not alter this consistency, since deletions can only increase the set
of positive examples of the hypothesis. Finally, recall that we already
argued in Section 1.3 that this algorithm never misclassifies any negative
example of the target conjunction ¢. Thus, if we run the algorithm on
an arbitrary sample S of labeled examples of some target conjunction, it
always outputs a hypothesis conjunction that is consistent with S, and
thus it is an Occam algorithm. Note that in this simple example, size(h)
(or equivalently, log |H, m|) depends only on n and not on m or size(c).

Now the number of conjunctions over z,...,z, is bounded by 3"
(each variable occurs positively or negatively or is absent entirely), so

38 Chapter 2

applying Theorem 2.2, we see that O((1/¢)log(1/8) + n/¢) examples are
sufficient to guarantee that the hypothesis output by the learning algo-
rithm has error less than e¢ with confidence at least 1 — §. This is an
improvement by a logarithmic factor over the bound given in Chapter 1.

2.3 Learning Conjunctions with Few
Relevant Variables

Despite the efficiency of our algorithm for PAC learning boolean con-
junctions, we can still imagine improvements. Let us define size(c) be
the number of literals appearing in the target conjunction c¢. Notice that
size(c) < n, but the size of the sample drawn by our learning algorithm
for conjunctions is proportional to n independent of how small size(c)
might be. In this section, we give a new algorithm that reduces the num-
ber of examples to nearly size(c). It can be argued that it is often realistic
to assume that size(c) << n, since we typically describe an object by
describing only a few attributes out of a large list of potential attributes.

Even though we greatly improve the sample size for the case of small
size(c), we should point out that the running time of the new learning
algorithm still grows with n, since the instances are of length n, and the
algorithm must take enough time to read each instance. An interesting
feature of the new algorithm is that it makes use of the negative examples,
unlike our previous algorithm for learning conjunctions.

In order to describe the new algorithm, we need to introduce a com-
binatorial problem and a well-known algorithm for its approximate solu-
tion. This approximation algorithm has many applications in computa-
tional learning theory.

The Set Cover Problem. Given as input a collection § of subsets of
U ={1,...,m}, find a subcollection 7 C & such that |7| is minimized,

Occam’s Razor 39

and the sets in T form a cover of U:

Ut="U.

teT
We assume, of course, that the entire collection § is itself a cover. For any
instance S of the Set Cover Problem, we let opt(S) denote the number
of sets in a minimum cardinality cover.

Finding an optimal cover is a well-known NP-hard problem. However,
there is an efficient greedy heuristic that is guaranteed to find a cover R
of cardinality at most O(opt(S)logm).

The greedy heuristic initializes R to be the empty collection. It first
adds to R the set s* from S with the largest cardinality, and then updates
S by replacing each set s in § by s — s*. It then repeats the process of
choosing the remaining set of largest cardinality and updating S until all
the elements of {1,...,m} are covered by R.

The greedy heuristic is based on the following fact: let U* C U. Then
there is always a set t in S such that [tNU*| > |U*|/opt(S). To see why
this is true, just observe that U* has a cover of size at most opt(S) (since
U does), and at least one of the sets in the optimal cover must cover a

1/opt(S) fraction of U*.

Let U; C U denote the set of elements still not covered after i steps
of the greedy heuristic. Then

|U; | 1
1] < |U;| — = Ui |1— .
Uia| < | opt(S) Uil opt(S)

So by induction on :

1 2
U;| < |1-
vl = (OptGS)) "
Choosing 7 > opt(S)logm suffices to drive this upper bound below 1.
Thus all the elements of U are covered after the algorithm has chosen
opt(S) log m sets.

40 Chapter 2

We now return to the problem of PAC learning conjunctions with few
relevant variables. We shall describe our new algorithm as an Occam
algorithm and apply Theorem 2.2 to obtain the required sample size
for PAC learning. Thus, given a sample S of m examples of a target
conjunction, the new Occam algorithm starts by applying our original
conjunctions algorithm — which uses only the positive examples — to
S in order to produce a hypothesis conjunction h. This conjunction will
have the property that it is consistent with S, since the old algorithm
was indeed an Occam algorithm. The new algorithm will then use the
negative examples in S to exclude several additional literals from h in
a manner described below, to compute a new hypothesis conjunction A’
containing at most size(c)logm of the literals appearing in h. This new
smaller hypothesis will still be consistent with S, and so the sample size
bound for PAC learning can be derived from Theorem 2.2.

Recall that excluding literals from h does not affect consistency with
the positive examples in S, since the set of positive examples of h only
grows as we delete literals. However, the new algorithm has to carefully
choose which literals of A it excludes in order to ensure that the hypothesis
is still consistent with all the negative examples in S. To do this, we cast
the problem as an instance of the Set Cover Problem and apply the greedy
algorithm.

For each literal z appearing in h, we can identify a subset N, C S
of the negative examples in S with the property that inclusion of z in
the hypothesis conjunction is sufficient to guarantee consistency with N,.
The set N, is just those negative examples in (a,0) € S for which the
value of z is 0 in a. Thus, we can think of the inclusion of z in our
hypothesis conjunction as “covering” the set N, of negative examples. If
we have a collection of N, that covers all the negative examples of S, and
each z appears in h, then the conjunction A’ of this collection will still
form a hypothesis consistent with S.

Our goal is thus reduced to covering the set of all negative exam-
ples in S with the minimum number of the sets N,. Applying the greedy
heuristic to this problem, and noting that among the literals of A, a cover

Occam’s Razor 41

of size(c) sets exists (since the literals that occur in the target conjunc-
tion must form a cover), we get a cover of size size(c)logm; in other
words, our hypothesis class H,, ,,, is the set of all conjunctions of at most
size(c)log m literals. Using the fact that a conjunction of £ literals over n
variables can be encoded using £log n bits, and setting £ = size(c) log m,
we get a bound of size(c)logmlogn on the number of bits needed to
represent our hypothesis, and thus |H,,| < 2¢2¢(c)legmlogn — Apply.
ing the condition m = ((1/€)log |Hnm|) required by Theorem 2.2,
we obtain the constraint m > ¢;((1/€)size(c) logmlogn) for some con-
stant ¢; > 0. It is easily verified that this is satisfied provided m >
c1((1/¢€)size(c) log nlog(size(c)logn)). Thus, the overall sample size re-
quired by the new algorithm is

m> e (1 log 1 size(c)log n(log size(c) + log log n)) ‘
€

s ;

Note that this bound has a slightly superlinear dependence on size(c),
but only an approximately logarithmic dependence on the total number
of variables n.

In fact, a slight modification of this algorithm that we shall now
sketch quite briefly gives a better bound. The basic idea behind the
modification is that rather than running the greedy cover heuristic until
the hypothesis covers all of the negative examples, we shall run it only
until the hypothesis misclassifies fewer than em/2 negative examples.
Thus, our resulting hypothesis will be almost but not quite consistent
with its input sample, where the degree of consistency is controlled by
the desired error bound e.

For the analysis, observe that now the halting condition for the greedy
heuristic is (1 — 1/size(c))im < (e/2)m instead of (1 — 1/size(c))im <
1 as before; here we are using the correspondence between opt(S) in
the covering problem and size(c) in the PAC learning problem. Thus,
we halt with a hypothesis of ¢ = size(c)log(2/¢) literals instead of 7 =

size(c)log m literals. This gives a smaller hypothesis class cardinality of
2size(c) log(2/€) logn‘

42 Chapter 2

Now we just need a lemma stating that the probability that a fixed
conjunction h such that error(h) > € is consistent with at least a frac-
tion 1 — €/2 of m random examples is bounded by some exponentially
decreasing function of m (that is, we need the analogue of the bound
(1 — €)™ on the probability that a hypothesis of error greater than e is
completely consistent with the sample). It turns out that we can state a
bound of e~¥"/16 on this probability, and this is discussed in the section
on Chernoff Bounds in the Appendix of Chapter 9. For our immediate
problem, given this bound we can now apply the same arguments as those
in the proof of Theorem 2.2, and by solving 2¢%¢(c)1og(2/€)logng—em/16 < §
we obtain a sample size bound of

size(c)log(2/¢) log n) ‘

€

1 1
m> ¢ (—log——l—
€)

2.4 Learning Decision Lists

Our final application of Occam learning is to an algorithm for PAC learn-
ing decision lists over the boolean variables zq,...,z,. A decision list
may be thought of as an ordered sequence of if-then-else statements.
The sequence of conditions in the decision list are tested in order, and
the answer associated with the first satisfied condition is output.

Formally, a k-decision list over the boolean variables zy,...,z, is
an ordered sequence L = (¢q,b1),..., (¢, b;) and a bit b, in which each ¢;
is a conjunction of at most k literals over z, ..., z,, and each b; € {0, 1}.
For any input a € {0,1}", the value L(a) is defined to be b;, where j
is the smallest index satisfying c;(a) = 1; if no such index exists, then
L(a) = b. Thus, b is the “default” value in case a falls off the end of the
list. We call b; the bit associated with the condition ¢;. Figure 2.1 shows
an example of a 2-decision list along with its evaluation on a particular
input.

First let us consider the expressive power of k-decision lists. We

Occam’s Razor 43

List L

X AXg P Xg P X AXG PP X A X P Xy A Xg P X AXg > 1

T '

0 1 1 0 1 0

T

L (011011) = 1

Figure 2.1: A 2-decision list and the path followed by an input. Evalua-
tion starts at the leftmost item and continues to the right until the first
condition is satisfied, at which point the binary value below becomes the
final result of the evaluation.

observe that if a concept ¢ can be represented as a k-decision list, then
so can —¢ (simply complement the values of the b;). Clearly, any k-
DNF formula can be represented as a k-decision list of the same length
(choose an arbitrary order in which to evaluate the terms of the k-DNF,
setting all the b; to 1 and the default b to 0). Since k-decision lists are
closed under complementation, they can also represent k-CNF formulae.
Furthermore, in Exercise 2.1 we demonstrate that for each k there exist
functions that can be represented by a k-decision list, but not by either
a k-DNF or a k-CNF formula. Thus, k-decision lists strictly generalize
these classes.

Theorem 2.3 For any fized k > 1, the representation class of k-decision
lists 1s efficiently PAC learnable.

Proof: We give an Occam algorithm and apply Theorem 2.2. We
present the algorithm for 1-decision lists; the problem for general k can
easily be reduced to this problem, exactly as the k&-CNF PAC learning
problem was reduced to the problem of PAC learning conjunctions in
Chapter 1.

44 Chapter 2

Given an input sample S of m examples of some 1-decision list, our
Occam algorithm starts with the empty decision list as its hypothesis.
In each step, it finds some literal z such that the set S, C S, which we
define to be the set of examples (positive or negative) in which z in set
to 1, is both non-empty and has the property that it contains either only
positive examples of the target concept, or only negative examples. We
call such a z a useful literal. The algorithm then adds this literal (with the
associated bit 1if S, contained only positive examples, and the associated
bit 0 if S, contained only negative examples) as the last condition in the
current hypothesis decision list, updates S to be S — S, and iterates the
process until S = () and therefore all examples are correctly classified by
the hypothesis decision list.

To prove that the algorithm always succeeds in finding a consistent
hypothesis, it suffices to show that it always succeeds in finding a useful
literal 2z at each step as long as S # (). But this is true because the target
decision correctly classifies every element of S, and so the first condition
z in the target decision list such that S, is non-empty is a useful literal.

Since any decision list on n variables can be encoded in O(nlogn)
bits, we can apply Theorem 2.2 to obtain a sample size bound of m >
c1((1/€)(log(1/8)+nlog n)) for PAC learning. Since the Occam algorithm
clearly runs in time polynomial in m, we have efficient PAC learning.

[O(Theorem 2.3)

2.5 Exercises

2.1. Show that for each k, there exists a function that can be represented

as a k-decision list, but not by a k-CNF or k-DNF formula.

2.2. A decision tree is similar to a 1-decision list, except now we allow
the (single-literal) decision conditions to be placed in a binary tree, with
the decision bits placed only at the leaves. To evaluate such a tree T
on input a € {0,1}", we simply follow the path through T defined by

Occam’s Razor 45

starting at the root of T' and evaluating the literal at each node on input
a, going left if the evaluation yields 0 and right if it yields 1. The value
T(a) is the bit value stored at the leaf reached by this path. Figure 2.2
shows an example of a decision tree along with its evaluation on an input.

We define the rank of a decision tree T' recursively as follows: the
rank of a tree consisting of a single node is 0. If the ranks of T"s left
subtrees and right subtrees are r; and rg respectively, then if rp = rg
the rank of T' is 1+ 1; otherwise, it is max(rg,rg). The rank is a measure
of how “unbalanced” the tree is.

Compute the rank of the decision tree given in Figure 2.2, and show
that the class of functions computed by rank r decision trees is included
in the class of functions computed by »-decision lists. Thus, for any fixed
r we can efficiently PAC learn rank r decision trees.

2.3. Let C be any concept class. Show that if C is efficiently PAC learn-
able, then for some constants @ > 1 and 8 < 1 there is an (a, 8)-Occam
algorithm for C. Hint: construct an appropriate simulation of the PAC
learning algorithm L in which the accuracy parameter depends on the
degree of the polynomial running time of L.

2.4. Recall that following our final definition of PAC learning (Defini-
tion 4), we emphasized the importance of restricting our attention to
PAC learning algorithms that use polynomially evaluatable hypothesis
classes H (see Definition 5). Suppose that we consider relaxing this re-
striction, and let H be the class of all Turing machines (not necessarily
polynomial time) — thus, the output of the learning algorithm can be
any program. Show that if C, is the class of all boolean circuits of size
at most p(n) for some fixed polynomial p(-), then C is efficiently PAC
learnable using H. Argue that your solution shows that this relaxation
trivializes the model of learning.

46 Chapter 2

Tree T

T(10010110) = 0

Figure 2.2: A deciston tree and the path followed by an input.

2.6 Bibliographic Notes

The notion of Occam learning as we have formalized it and our main
theorems stating that Occam learning implies PAC learning are due to
Blumer, Ehrenfeucht, Haussler and Warmuth [21]. There is a converse to
Theorem 2.1 which establishes that C is PAC learnable if and only if there
i1s an Occam algorithm for C. This was the topic of Exercise 2.3, whose
intended solution is due to Board and Pitt [23]. A considerably stronger
converse 1s a consequence of the equivalence between weak and strong

PAC learning due to Schapire [84, 85] (see also the work of Freund [35, 36]

Occam’s Razor 47

and Helmbold and Warmuth [52]). We shall study this equivalence in
Chapter 4.

The predictive power of Occam algorithms continues to hold for sev-
eral variants of the PAC model and for more general notions of hypothesis
complexity. These include models for PAC learning in the presence of
various types of errors (Angluin and Laird [10], Kearns and Li [57, 55]),
learning probabilistic concepts (Kearns and Schapire [61, 85]), and func-
tion learning (Natarajan [70]). In Chapter 3 we will consider a very gen-
eral notion of hypothesis complexity, the Vapnik-Chervonenkis dimension
(Vapnik [94]; Blumer, Ehrenfeucht, Haussler and Warmuth [22]), and we
again prove the predictive power of algorithms finding a consistent hy-
pothesis with limited complexity. The predictive power of Occam algo-
rithms in a setting where the examples are not independent but obey a
Markovian constraint is examined by Aldous and Vazirani [3].

The algorithm for learning conjunctions with few relevant literals
is due to Haussler [45], who also provides a lucid discussion of Occam
learning and inductive bias from the artificial intelligence perspective.
The analysis of the greedy set cover approximation algorithm is due to
Chvatal [26]. The modification of the covering algorithm to only nearly
cover the sample is due to M. Warmuth. The problem of learning when
there are many irrelevant variables present has also been carefully exam-
ined by Littlestone [65, 66] and Blum [17] in on-line models of learning.
The decision list learning algorithm is due to Rivest [78], and Exercise
2.2 is due to A. Blum (see also the paper Ehrenfeucht and Haussler [32]).

Relationships between various measures of hypothesis complexity and
generalization ability have been proposed and examined in a a large and
fascinating literature that predates the PAC model results given here.
Two dominant theories along these lines are the structural risk mini-
mization of Vapnik [94] and the minimum description length principle
of Rissanen [77]. The papers of Quinlan and Rivest [75] and DeSantis,
Markowsky and Wegman [29] examine variants of the minimum descrip-
tion length principle from a computational learning theory viewpoint.
It has frequently been observed that the minimum description length

48 Chapter 2

criterion has a Bayesian interpretation in which representational length
determines the prior distribution. This viewpoint is further explored in
the paper of Evans, Rajagopalan and Vazirani [34], where the notion of
an Occam algorithm is generalized to arbitrary stochastic processes.

