
2Occam's RazorThe PAC model introduced in Chapter 1 de�ned learning directly interms of the predictive power of the hypothesis output by the learningalgorithm. It was possible to apply this measure of success to a learningalgorithm because we made the assumption that the instances are drawnindependently from a �xed probability distribution D, and then measuredpredictive power with respect to this same distribution.In this chapter, we consider a rather di�erent de�nition of learningthat makes no assumptions about how the instances in a labeled sampleare chosen. (We still assume that the labels are generated by a targetconcept chosen from a known class.) Instead of measuring the predictivepower of a hypothesis, the new de�nition judges the hypothesis by howsuccinctly it explains the observed data (a labeled sample). The crucialdi�erence between PAC learning and the new de�nition is that in PAClearning, the random sample drawn by the learning algorithm is intendedonly as an aid for reaching an accurate model of some external process(the target concept and distribution), while in the new de�nition we areconcerned only with the �xed sample before us, and not any externalprocess.This new de�nition will be called Occam learning, because it for-malizes a principle that was �rst expounded by the theologian William

32 Chapter 2of Occam, and which has since become a central doctrine of scienti�cmethodology. The principle is often referred to as Occam's Razor to in-dicate that overly complex scienti�c theories should be subjected to asimplifying knife.If we equate \simplicity" with representational succinctness, then an-other way to interpret Occam's principle is that learning is the act of�nding a pattern in the observed data that facilitates a compact repre-sentation or compression of this data. In our simple concept learningsetting, succinctness is measured by the size of the representation of thehypothesis concept. Equivalently, we can measure succinctness by thecardinality of the hypothesis class used by the algorithm, for if this classis small then a typical hypothesis from the class can be represented bya short binary string, and if this class is large then a typical hypothesismust be represented by a long string. Thus an algorithm is an Occamalgorithm if it �nds a short hypothesis consistent with the observed data.Despite its long and illustrious history in the philosophy of scienceand its extreme generality, there is something unsatisfying about thenotion of an Occam algorithm. After all, the primary goal of science(or more generally, of the learning process) is to formulate theories thataccurately predict future observations, not just to succinctly representpast observations. In this chapter, we will prove that when restricted tothe probabilistic setting of the PAC model, Occam algorithms do indeedhave predictive power. This provides a formal justi�cation of the Occamprinciple, albeit in a restricted setting.Thus, under appropriate conditions, any algorithm that always �ndsa succinct hypothesis that is consistent with a given input sample isautomatically a PAC learning algorithm. In addition to the philosophicalinterpretation we have just discussed, this reduction of PAC learningto Occam learning provides a new method of designing PAC learningalgorithms.

Occam's Razor 332.1 Occam Learning and SuccinctnessAs in Chapter 1, let X = [n�1Xn be the instance space, let C = [n�1Cnbe the target concept class, and let H = [n�1Hn be the hypothesisrepresentation class. In this chapter we will assume, unless explicitlystated otherwise, that the hypothesis representation scheme of H uses abinary alphabet, and we de�ne size(h) to be the length of the bit stringh. Also, recall that for a concept c 2 C, size(c) denotes the size of thesmallest representation of c in H.Let c 2 Cn denote the target concept. A labeled sample S of cardi-nality m is a set of pairs:S = fhx1; c(x1)i; : : : ; hxm; c(xm)ig:An Occam algorithm L takes as input a labeled sample S, and outputsa \short" hypothesis h that is consistent with S. By consistent we meanthat h(xi) = c(xi) for each i, and by \short" we mean that size(h) is asu�ciently slowly growing function of n, size(c) andm. This is formalizedin the following de�nition.De�nition 6 Let � � 0 and 0 � � < 1 be constants. L is an (�; �)-Occam algorithm for C using H if on input a sample S of cardinalitym labeled according to c 2 Cn, L outputs a hypothesis h 2 H such that:� h is consistent with S.� size(h) � (n � size(c))�m�.We say that L is an e�cient (�; �)-Occam algorithm if its running timeis bounded by a polynomial in n, m and size(c).In what sense is the output h of an Occam algorithm succinct? Firstlet us assume that m >> n, so that the above bound can be e�ectively

34 Chapter 2simpli�ed to size(h) < m� for some � < 1. Since the hypothesis h isconsistent with the sample S, h allows us to reconstruct the m labelsc(x1) = h(x1); : : : ; c(xm) = h(xm) given only the unlabeled sequence ofinstances x1; : : : ; xm. Thus the m bits c(x1); : : : ; c(xm) have been e�ec-tively compressed into a much shorter string h of length at most m�.Note that the requirement � < 1 is quite weak, since a consistent hy-pothesis of length O(mn) can always be achieved by simply storing thesample S in a table (at a cost of n + 1 bits per labeled example) andgiving an arbitrary (say negative) answer for instances that are not inthe table. We would certainly not expect such a hypothesis to have anypredictive power.Let us also observe that even in the case m << n, the shortest con-sistent hypothesis in H may in fact be the target concept, and so wemust allow size(h) to depend at least linearly on size(c). The de�nitionof succinctness above is considerably more liberal than this in terms ofthe allowed dependence on n, and also allows a generous dependence onthe number of examples m. We will see cases where this makes it easierto e�ciently �nd a consistent hypothesis | by contrast, computing theshortest hypothesis consistent with the data is often a computationallyhard problem.The next theorem, which is the main result of this chapter, states thatany e�cient Occam algorithm is also an e�cient PAC learning algorithm.Theorem 2.1 (Occam's Razor) Let L be an e�cient (�; �)-Occam al-gorithm for C using H. Let D be the target distribution over the instancespace X, let c 2 Cn be the target concept, and 0 < �; � � 1. Then there isa constant a > 0 such that if L is given as input a random sample S ofm examples drawn from EX (c;D), where m satis�esm � a0@1� log 1� + (n � size(c))�)� ! 11��1Athen with probability at least 1�� the output h of L satis�es error(h) � �.Moreover, L runs in time polynomial in n, size(c), 1=� and 1=�.

Occam's Razor 35Notice that as � tends to 1, the exponent in the bound for m tendsto in�nity. This corresponds with our intuition that as the length of thehypothesis approaches that of the data itself, the predictive power of thehypothesis is diminishing.For the applications we give later, it turns out to be most conve-nient to state and prove Theorem 2.1 in a slightly more general form,in which we measure representational succinctness by the cardinality ofthe hypothesis class rather than by the bit length size(h). We then proveTheorem 2.1 as a special case. To make this precise, let Hn = [m�1Hn;m.Consider a learning algorithm for C using H that on input a labeled sam-ple S of cardinality m outputs a hypothesis from Hn;m. The followingtheorem shows that if jHn;mj is small enough, then the hypothesis outputby L has small error with high con�dence.Theorem 2.2 (Occam's Razor, Cardinality Version) Let C be a conceptclass and H a representation class. Let L be an algorithm such that forany n and any c 2 Cn, if L is given as input a sample S of m labeledexamples of c, then L runs in time polynomial in n, m and size(c), andoutputs an h 2 Hn;m that is consistent with S. Then there is a constantb > 0 such that for any n, any distribution D over Xn, and any targetconcept c 2 Cn, if L is given as input a random sample from EX (c;D) ofm examples, where jHn;mj satis�eslog jHn;mj � b�m� log 1�(or equivalently, where m satis�es m � (1=b�)(log jHn;mj + log(1=�)))then L is guaranteed to �nd a hypothesis h 2 Hn that with probability atleast 1� � obeys error(h) � �.Note that here we do not necessarily claim that L is an e�cient PAClearning algorithm. In order for the theorem to apply, we must (if pos-sible) pick m large enough so that b�m dominates log jHn;mj. Moreover,since the running time of L has a polynomial dependence on m, in order

36 Chapter 2to assert that L is an e�cient PAC algorithm, we also have to bound mby some polynomial in n, size(c), 1=� and 1=�. The proof of Theorem 2.1relies on the fact that in the case of an (�; �)-Occam algorithm, log jHn;mjgrows only as m�, and therefore given any �, this is smaller than b�m fora small value of m.We �rst give a proof of Theorem 2.2.Proof: We say that a hypothesis h 2 Hn;m is bad if error(h) > �, wherethe error is of course measured with respect to the target concept c andand the target distribution D. Then by the independence of the randomexamples, the probability that a �xed bad hypothesis h is consistentwith a randomly drawn sample of m examples from EX (c;D) is at most(1 � �)m. Using the union bound, this implies that if H0 � Hn;m isthe set of all bad hypotheses in Hn;m, then the probability that somehypothesis in H0 is consistent with a random sample of size m is at mostjH0j(1� �)m. We want this to be at most �; since jH0j � jHn;mj we get astronger condition if we solve for jHn;mj(1� �)m � �. Taking logarithms,we obtain log jHn;mj � m log(1=(1 � �)) � log(1=�). Using the fact thatlog(1=(1 � �)) = �(�), we get the statement of the theorem.(Theorem 2.2)We now prove Theorem 2.1:Proof: Let Hn;m denote the set of all possible hypothesis represen-tations that the (�; �)-Occam algorithm L might output when given asinput a labeled sample S of cardinality m. Since L is an (�; �)-Occamalgorithm, every such hypothesis has bit length at most (n � size(c))�m�,thus implying that jHn;mj � 2(n�size(c))�m� . By Theorem 2.2, the outputof L has error at most � with con�dence at least 1� � providedlog jHn;mj � b�m� log 1� :Transposing, we want m such thatm � 1b� log jHn;mj+ 1b� log 1�

Occam's Razor 37The above condition can be satis�ed by picking m such that both m �(2=b�) log jHn;mj and m � (2=b�) log(1=�) hold. Choosing a = 2=b yieldsthe statement of the theorem. (Theorem 2.1)2.2 Improving the Sample Size forLearning ConjunctionsAs an easy warm-up to some more interesting applications of Occam'sRazor, we �rst return to the problem of PAC learning conjunctions ofboolean literals, and apply Theorem 2.2 to slightly improve the sam-ple size bound (and therefore the running time bound) of the learningalgorithm we presented for this problem in Section 1.3.Thus as in Section 1.3, we let Xn = f0; 1gn. Each a 2 f0; 1gn isinterpreted as an assignment to the n boolean variables x1; : : : ; xn. LetCn be the class of conjunctions of literals over x1; : : : ; xn. Recall that ourlearning algorithm started with a hypothesis that is the conjunction of allthe 2n literals. Given as input a set of m labeled examples, the algorithmignored negative examples, and on each positive example ha; 1i, the al-gorithm deleted any literal z such that z = 0 in a. Note that this ensuresthat upon receiving the positive example a, the hypothesis is updatedto be consistent with this example. Furthermore, any future deletionswill not alter this consistency, since deletions can only increase the setof positive examples of the hypothesis. Finally, recall that we alreadyargued in Section 1.3 that this algorithm never misclassi�es any negativeexample of the target conjunction c. Thus, if we run the algorithm onan arbitrary sample S of labeled examples of some target conjunction, italways outputs a hypothesis conjunction that is consistent with S, andthus it is an Occam algorithm. Note that in this simple example, size(h)(or equivalently, log jHn;mj) depends only on n and not on m or size(c).Now the number of conjunctions over x1; : : : ; xn is bounded by 3n(each variable occurs positively or negatively or is absent entirely), so

38 Chapter 2applying Theorem 2.2, we see that O((1=�) log(1=�) + n=�) examples aresu�cient to guarantee that the hypothesis output by the learning algo-rithm has error less than � with con�dence at least 1 � �. This is animprovement by a logarithmic factor over the bound given in Chapter 1.2.3 Learning Conjunctions with FewRelevant VariablesDespite the e�ciency of our algorithm for PAC learning boolean con-junctions, we can still imagine improvements. Let us de�ne size(c) bethe number of literals appearing in the target conjunction c. Notice thatsize(c) � n, but the size of the sample drawn by our learning algorithmfor conjunctions is proportional to n independent of how small size(c)might be. In this section, we give a new algorithm that reduces the num-ber of examples to nearly size(c). It can be argued that it is often realisticto assume that size(c) << n, since we typically describe an object bydescribing only a few attributes out of a large list of potential attributes.Even though we greatly improve the sample size for the case of smallsize(c), we should point out that the running time of the new learningalgorithm still grows with n, since the instances are of length n, and thealgorithm must take enough time to read each instance. An interestingfeature of the new algorithm is that it makes use of the negative examples,unlike our previous algorithm for learning conjunctions.In order to describe the new algorithm, we need to introduce a com-binatorial problem and a well-known algorithm for its approximate solu-tion. This approximation algorithm has many applications in computa-tional learning theory.The Set Cover Problem. Given as input a collection S of subsets ofU = f1; : : : ;mg, �nd a subcollection T � S such that jT j is minimized,

Occam's Razor 39and the sets in T form a cover of U :[t2T t = U:We assume, of course, that the entire collection S is itself a cover. For anyinstance S of the Set Cover Problem, we let opt(S) denote the numberof sets in a minimum cardinality cover.Finding an optimal cover is a well-known NP -hard problem. However,there is an e�cient greedy heuristic that is guaranteed to �nd a cover Rof cardinality at most O(opt(S) logm).The greedy heuristic initializes R to be the empty collection. It �rstadds toR the set s� from S with the largest cardinality, and then updatesS by replacing each set s in S by s� s�. It then repeats the process ofchoosing the remaining set of largest cardinality and updating S until allthe elements of f1; : : : ;mg are covered by R.The greedy heuristic is based on the following fact: let U� � U . Thenthere is always a set t in S such that jt\U�j � jU�j=opt(S). To see whythis is true, just observe that U� has a cover of size at most opt(S) (sinceU does), and at least one of the sets in the optimal cover must cover a1=opt (S) fraction of U�.Let Ui � U denote the set of elements still not covered after i stepsof the greedy heuristic. ThenjUi+1j � jUij � jUijopt(S) = jUij 1� 1opt(S)! :So by induction on i: jUij � 1 � 1opt(S)!im:Choosing i � opt(S) logm su�ces to drive this upper bound below 1.Thus all the elements of U are covered after the algorithm has chosenopt(S) logm sets.

40 Chapter 2We now return to the problem of PAC learning conjunctions with fewrelevant variables. We shall describe our new algorithm as an Occamalgorithm and apply Theorem 2.2 to obtain the required sample sizefor PAC learning. Thus, given a sample S of m examples of a targetconjunction, the new Occam algorithm starts by applying our originalconjunctions algorithm | which uses only the positive examples | toS in order to produce a hypothesis conjunction h. This conjunction willhave the property that it is consistent with S, since the old algorithmwas indeed an Occam algorithm. The new algorithm will then use thenegative examples in S to exclude several additional literals from h ina manner described below, to compute a new hypothesis conjunction h0containing at most size(c) logm of the literals appearing in h. This newsmaller hypothesis will still be consistent with S, and so the sample sizebound for PAC learning can be derived from Theorem 2.2.Recall that excluding literals from h does not a�ect consistency withthe positive examples in S, since the set of positive examples of h onlygrows as we delete literals. However, the new algorithm has to carefullychoose which literals of h it excludes in order to ensure that the hypothesisis still consistent with all the negative examples in S. To do this, we castthe problem as an instance of the Set Cover Problem and apply the greedyalgorithm.For each literal z appearing in h, we can identify a subset Nz � Sof the negative examples in S with the property that inclusion of z inthe hypothesis conjunction is su�cient to guarantee consistency with Nz.The set Nz is just those negative examples in ha; 0i 2 S for which thevalue of z is 0 in a. Thus, we can think of the inclusion of z in ourhypothesis conjunction as \covering" the set Nz of negative examples. Ifwe have a collection of Nz that covers all the negative examples of S, andeach z appears in h, then the conjunction h0 of this collection will stillform a hypothesis consistent with S.Our goal is thus reduced to covering the set of all negative exam-ples in S with the minimum number of the sets Nz. Applying the greedyheuristic to this problem, and noting that among the literals of h, a cover

Occam's Razor 41of size(c) sets exists (since the literals that occur in the target conjunc-tion must form a cover), we get a cover of size size(c) logm; in otherwords, our hypothesis class Hn;m is the set of all conjunctions of at mostsize(c) logm literals. Using the fact that a conjunction of ` literals over nvariables can be encoded using ` log n bits, and setting ` = size(c) logm,we get a bound of size(c) logm log n on the number of bits needed torepresent our hypothesis, and thus jHn;mj � 2size(c) logm logn. Apply-ing the condition m =
((1=�) log jHn;mj) required by Theorem 2.2,we obtain the constraint m � c1((1=�)size(c) logm log n) for some con-stant c1 > 0. It is easily veri�ed that this is satis�ed provided m �c1((1=�)size(c) log n log(size(c) log n)). Thus, the overall sample size re-quired by the new algorithm ism � c1 1� log 1� + size(c) log n(log size(c) + log log n)� ! :Note that this bound has a slightly superlinear dependence on size(c),but only an approximately logarithmic dependence on the total numberof variables n.In fact, a slight modi�cation of this algorithm that we shall nowsketch quite brie
y gives a better bound. The basic idea behind themodi�cation is that rather than running the greedy cover heuristic untilthe hypothesis covers all of the negative examples, we shall run it onlyuntil the hypothesis misclassi�es fewer than �m=2 negative examples.Thus, our resulting hypothesis will be almost but not quite consistentwith its input sample, where the degree of consistency is controlled bythe desired error bound �.For the analysis, observe that now the halting condition for the greedyheuristic is (1 � 1=size(c))im < (�=2)m instead of (1 � 1=size(c))im <1 as before; here we are using the correspondence between opt(S) inthe covering problem and size(c) in the PAC learning problem. Thus,we halt with a hypothesis of i = size(c) log(2=�) literals instead of i =size(c) logm literals. This gives a smaller hypothesis class cardinality of2size(c) log(2=�) logn.

42 Chapter 2Now we just need a lemma stating that the probability that a �xedconjunction h such that error(h) � � is consistent with at least a frac-tion 1 � �=2 of m random examples is bounded by some exponentiallydecreasing function of m (that is, we need the analogue of the bound(1 � �)m on the probability that a hypothesis of error greater than � iscompletely consistent with the sample). It turns out that we can state abound of e��m=16 on this probability, and this is discussed in the sectionon Cherno� Bounds in the Appendix of Chapter 9. For our immediateproblem, given this bound we can now apply the same arguments as thosein the proof of Theorem 2.2, and by solving 2size(c) log(2=�) logne��m=16 � �we obtain a sample size bound ofm � c1 1� log 1� + size(c) log(2=�) log n� ! :2.4 Learning Decision ListsOur �nal application of Occam learning is to an algorithm for PAC learn-ing decision lists over the boolean variables x1; : : : ; xn. A decision listmay be thought of as an ordered sequence of if-then-else statements.The sequence of conditions in the decision list are tested in order, andthe answer associated with the �rst satis�ed condition is output.Formally, a k-decision list over the boolean variables x1; : : : ; xn isan ordered sequence L = (c1; b1); : : : ; (cl; bl) and a bit b, in which each ciis a conjunction of at most k literals over x1; : : : ; xn, and each bi 2 f0; 1g.For any input a 2 f0; 1gn, the value L(a) is de�ned to be bj, where jis the smallest index satisfying cj(a) = 1; if no such index exists, thenL(a) = b. Thus, b is the \default" value in case a falls o� the end of thelist. We call bi the bit associated with the condition ci. Figure 2.1 showsan example of a 2-decision list along with its evaluation on a particularinput.First let us consider the expressive power of k-decision lists. We

Occam's Razor 43
0

x1 ^ x3
–

1

x4

1

x2 ^ x3
–

0

x1 ^ x5

1

x4 ^ x6
–

0

x1 ^ x6
–

1

List L

L (011011) = 1Figure 2.1: A 2-decision list and the path followed by an input. Evalua-tion starts at the leftmost item and continues to the right until the �rstcondition is satis�ed, at which point the binary value below becomes the�nal result of the evaluation.observe that if a concept c can be represented as a k-decision list, thenso can :c (simply complement the values of the bi). Clearly, any k-DNF formula can be represented as a k-decision list of the same length(choose an arbitrary order in which to evaluate the terms of the k-DNF,setting all the bi to 1 and the default b to 0). Since k-decision lists areclosed under complementation, they can also represent k-CNF formulae.Furthermore, in Exercise 2.1 we demonstrate that for each k there existfunctions that can be represented by a k-decision list, but not by eithera k-DNF or a k-CNF formula. Thus, k-decision lists strictly generalizethese classes.Theorem 2.3 For any �xed k � 1, the representation class of k-decisionlists is e�ciently PAC learnable.Proof: We give an Occam algorithm and apply Theorem 2.2. Wepresent the algorithm for 1-decision lists; the problem for general k caneasily be reduced to this problem, exactly as the k-CNF PAC learningproblem was reduced to the problem of PAC learning conjunctions inChapter 1.

44 Chapter 2Given an input sample S of m examples of some 1-decision list, ourOccam algorithm starts with the empty decision list as its hypothesis.In each step, it �nds some literal z such that the set Sz � S, which wede�ne to be the set of examples (positive or negative) in which z in setto 1, is both non-empty and has the property that it contains either onlypositive examples of the target concept, or only negative examples. Wecall such a z a useful literal. The algorithm then adds this literal (with theassociated bit 1 if Sz contained only positive examples, and the associatedbit 0 if Sz contained only negative examples) as the last condition in thecurrent hypothesis decision list, updates S to be S�Sz, and iterates theprocess until S = ; and therefore all examples are correctly classi�ed bythe hypothesis decision list.To prove that the algorithm always succeeds in �nding a consistenthypothesis, it su�ces to show that it always succeeds in �nding a usefulliteral z at each step as long as S 6= ;. But this is true because the targetdecision correctly classi�es every element of S, and so the �rst conditionz in the target decision list such that Sz is non-empty is a useful literal.Since any decision list on n variables can be encoded in O(n log n)bits, we can apply Theorem 2.2 to obtain a sample size bound of m �c1((1=�)(log(1=�)+n log n)) for PAC learning. Since the Occam algorithmclearly runs in time polynomial in m, we have e�cient PAC learning.(Theorem 2.3)2.5 Exercises2.1. Show that for each k, there exists a function that can be representedas a k-decision list, but not by a k-CNF or k-DNF formula.2.2. A decision tree is similar to a 1-decision list, except now we allowthe (single-literal) decision conditions to be placed in a binary tree, withthe decision bits placed only at the leaves. To evaluate such a tree Ton input a 2 f0; 1gn, we simply follow the path through T de�ned by

Occam's Razor 45starting at the root of T and evaluating the literal at each node on inputa, going left if the evaluation yields 0 and right if it yields 1. The valueT (a) is the bit value stored at the leaf reached by this path. Figure 2.2shows an example of a decision tree along with its evaluation on an input.We de�ne the rank of a decision tree T recursively as follows: therank of a tree consisting of a single node is 0. If the ranks of T 's leftsubtrees and right subtrees are rL and rR respectively, then if rL = rRthe rank of T is rL+1; otherwise, it is max(rL; rR). The rank is a measureof how \unbalanced" the tree is.Compute the rank of the decision tree given in Figure 2.2, and showthat the class of functions computed by rank r decision trees is includedin the class of functions computed by r-decision lists. Thus, for any �xedr we can e�ciently PAC learn rank r decision trees.2.3. Let C be any concept class. Show that if C is e�ciently PAC learn-able, then for some constants � � 1 and � < 1 there is an (�; �)-Occamalgorithm for C. Hint: construct an appropriate simulation of the PAClearning algorithm L in which the accuracy parameter depends on thedegree of the polynomial running time of L.2.4. Recall that following our �nal de�nition of PAC learning (De�ni-tion 4), we emphasized the importance of restricting our attention toPAC learning algorithms that use polynomially evaluatable hypothesisclasses H (see De�nition 5). Suppose that we consider relaxing this re-striction, and let H be the class of all Turing machines (not necessarilypolynomial time) | thus, the output of the learning algorithm can beany program. Show that if Cn is the class of all boolean circuits of sizeat most p(n) for some �xed polynomial p(�), then C is e�ciently PAClearnable using H. Argue that your solution shows that this relaxationtrivializes the model of learning.

46 Chapter 2
10

1 1

0

Tree T

0

0

1

0

101 0 1

x3
–

x5
–

x2 x7

x4 x8

x4 x8 x2 x4

x5 x6
–

x1

T(10010110) = 0Figure 2.2: A decision tree and the path followed by an input.2.6 Bibliographic NotesThe notion of Occam learning as we have formalized it and our maintheorems stating that Occam learning implies PAC learning are due toBlumer, Ehrenfeucht, Haussler and Warmuth [21]. There is a converse toTheorem 2.1 which establishes that C is PAC learnable if and only if thereis an Occam algorithm for C. This was the topic of Exercise 2.3, whoseintended solution is due to Board and Pitt [23]. A considerably strongerconverse is a consequence of the equivalence between weak and strongPAC learning due to Schapire [84, 85] (see also the work of Freund [35, 36]

Occam's Razor 47and Helmbold and Warmuth [52]). We shall study this equivalence inChapter 4.The predictive power of Occam algorithms continues to hold for sev-eral variants of the PACmodel and for more general notions of hypothesiscomplexity. These include models for PAC learning in the presence ofvarious types of errors (Angluin and Laird [10], Kearns and Li [57, 55]),learning probabilistic concepts (Kearns and Schapire [61, 85]), and func-tion learning (Natarajan [70]). In Chapter 3 we will consider a very gen-eral notion of hypothesis complexity, the Vapnik-Chervonenkis dimension(Vapnik [94]; Blumer, Ehrenfeucht, Haussler and Warmuth [22]), and weagain prove the predictive power of algorithms �nding a consistent hy-pothesis with limited complexity. The predictive power of Occam algo-rithms in a setting where the examples are not independent but obey aMarkovian constraint is examined by Aldous and Vazirani [3].The algorithm for learning conjunctions with few relevant literalsis due to Haussler [45], who also provides a lucid discussion of Occamlearning and inductive bias from the arti�cial intelligence perspective.The analysis of the greedy set cover approximation algorithm is due toChvatal [26]. The modi�cation of the covering algorithm to only nearlycover the sample is due to M. Warmuth. The problem of learning whenthere are many irrelevant variables present has also been carefully exam-ined by Littlestone [65, 66] and Blum [17] in on-line models of learning.The decision list learning algorithm is due to Rivest [78], and Exercise2.2 is due to A. Blum (see also the paper Ehrenfeucht and Haussler [32]).Relationships between various measures of hypothesis complexity andgeneralization ability have been proposed and examined in a a large andfascinating literature that predates the PAC model results given here.Two dominant theories along these lines are the structural risk mini-mization of Vapnik [94] and the minimum description length principleof Rissanen [77]. The papers of Quinlan and Rivest [75] and DeSantis,Markowsky and Wegman [29] examine variants of the minimum descrip-tion length principle from a computational learning theory viewpoint.It has frequently been observed that the minimum description length

48 Chapter 2criterion has a Bayesian interpretation in which representational lengthdetermines the prior distribution. This viewpoint is further explored inthe paper of Evans, Rajagopalan and Vazirani [34], where the notion ofan Occam algorithm is generalized to arbitrary stochastic processes.

