SAGAS

Hector Garcia-Molina
Kenneth Salem

Department of Computer Science
Princeton University
Princeton, N J 08544

Abstract

Long hved transactions (LLTs) hold on to
database resources for relatively long periods of
time, significantly delaying the termination of
shorter and more common transactions To
alleviate these problems we propose the notion of
a saga A LLT 1s a saga if 1t can be written as a
sequence of transactions that can be mterleaved
with other transactions The database manage-
ment system guarantees that either all the tran-
sactions 1n a saga are successfully completed or
compensating transactions are run to amend a
partial execution Both the concept of saga and
1ts 1mplementation are relatively simple, but they
have the potential to improve performance
significantly We analyze the various 1mplemen-
tation 1ssues related to sagas, ncluding how they
can be run on an existing system that does not
directly support them We also discuss tech-
niques for database and LLT design that make 1t
feasible to break up LLTs into sagas

1. INTRODUCTION

As 1ts name ndicates, a long lwved transac-
tston 18 a transaction whose execution, even
without 1nterference from other transactions,
takes a substantial amount of time, possibly on
the order of hours or days A long lived transac-
tion, or LLT, has a long duration compared to

Permission to copy without fee all or part of this material 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and 1ts date appear, and notice is given that copying
1s by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specfic
permission

© 1987 ACM 0-89791-236-5/87/0005/0249 75¢

249

the majority of other transactions either because
it accesses many database objects, 1t has lengthy
computations, 1t pauses for inputs from the users,
or a combination of these factors Examples of
LLTs are transactions to produce monthly
account statements at a bank, transactions to
process claims at an insurance company, and
transactions to collect statistics over an entire
database [Gray8la]

In most cases, LLTs present serious perfor-
mance problems Since they are transactions, the
system must execute them as atomic actions, thus
preserving the consistency of the
database [Date8la,Ullm82a] To make a tran-
saction atomic, the system wusually locks the
objects accessed by the transaction until 1t com-
mats, and this typically occurs at the end of the
transaction As a consequence, other transac-
tions wishing to access the LLT’s objects suffer a
long locking delay If LLTs are long because they
access many database objects then other transac-
tions are hkely to suffer from an increased block-
mmg rate as well, 1e they are more lkely to
conflict with an LLT than with a shorter transac-
tion

Furthermore, the transaction abort rate can
also be increased by LLTs As discussed
i [Gray81b], the frequency of deadlock 1s very
sensitive to the “size” of transactions, that 1s, to
how many objects transactions access (In the
analysis of [Gray81b] the deadlock frequency
grows with the fourth power of the transaction
size) Hence, since LLTs access many objects,
they may cause many deadlocks, and correspond-
mngly, many abortions From the pomt of view of
system crashes, LLTs have a higher probability of
encountering a failure (because of their duration),
and are thus more likely to encounter yet more
delays and more likely to be aborted themselves

In general there 1s no solution that ehm-
mates the problems of LLTs Even if we use a
mechanism different from locking to ensure atom-
1c1ty of the LLTs, the long delays and/or the high
abort rate will remamn No matter how the
mechanmism operates, a transaction that needs to
access the objects that were accessed by a LLT
cannot commit until the LLT commits

However, for specific applications 1t may be
possible to alleviate the problems by relaxing the
requirement that an LLT be executed as an
atomic action In other words, without sacnficing
the consistency of the database, 1t may be possi-
ble for certain LLTs to release thewr resources
before they complete, thus permitting other wait-
ng transactions to proceed

To 1llustrate this 1dea, consider an airhne
reservation application The database (or actu-
ally a collection of databases from different air-
lines) contains reservations for flights, and a tran-
saction T wishes to make a number of reserva-
tions. For this discussion, let us assume that T 1s
a LLT (say 1t pauses for customer input after
each reservation) In this application 1t may not
be necessary for T to hold on to all of 1its
resources until 1t completes For instance, after
T reserves a seat on flight F'y, 1t could 1mmed:-
ately allow other transactions to reserve seats on
the same fight In other words, we can view T
as a collection of “sub-transactions” Ty, To,
T, that reserve the individual seats

However, we do not wish to submit T to the
database management system (DBMS) simply as
a collection of independent transactions because
we still want T to be a umt that 1s either suc-
cessfully completed or not done at all We would
not be satisfied with a DBMS that would allow T
to reserve three out of five seats and then (due to
a crash) do nothing more On the other hand, we
would be satisfied with a DBMS that guaranteed
that T would make all of its reservations, or
would cancel any reservations made if T had to
be suspended

This example shows that a control mechan-
ism that 1s less ngid than the conventional
atomic-transaction ones but still offers some
guarantees regarding the execution of the com-
ponents of an LLT would be useful In this paper
we will present such a mechanism

Let us use the term saga to refer to a LLT
that can be broken up into a collection of sub-
transactions that can be interleaved 1n any way
with other transactions Each sub-transaction

250

this case 1s a real transaction 1n the sense that 1t
preserves database consistency However, unlke
other transactions, the transactions 1n a saga are
related to each other and should be executed as a
(non-atomic) umt any partial executions of the
saga are undesirable, and if they occur, must be
compensated for

To amend partial executions, each saga
transaction T, should be provided with a com-
pensating transaction C, The compensating
transaction undoes, from a semantic point of
view, any of the actions performed by T, but
does not necessarily return the database to the
state that existed when the execution of T
began In our airline example, if T, reserves a
seat on a flight, then C, can cancel the reserva-
tion (say by subtracting one from the number of
reservations and performing some other checks)
But C, cannot stmply store 1n the database the
number of seats that existed when T, ran because
other transactions could have run between the
time T, reserved the seat and C, canceled the
reservation, and could have changed the number
of reservations for this flight

Once compensating transactions Cq, O,
C,_1 are defined for saga Ty, Ty, T,, then
the system can make the following guarantee
Exther the sequence

Ty, Ty, T,
(which 1s the preferable one) or the sequence
Tl) T27 T]) OJ; 027 Cl

for some 0 <) < n will be executed (Note that
other transactions might see the effects of a par-
tia] saga execution When a compensating tran-
saction C; 1s run, no effort 1s made to notify or
abort transactions that mght have seen the
results of T, before they were compensated for by

C)

Sagas appear to be a relatively common
type of LLT They occur when a LLT consists of
a sequence of relatively independent steps, where
each step does not have to observe the same con-
sistent database state For instance, in a bank 1t
1s common to perform a fixed operation (eg,
compute nterest) on all accounts, and there 1s
very httle interaction between the computations
for one account and the next In an office infor-
mation system, 1t 1s also common to have LLTs
with independent steps that can be interleaved
with those of other transactions For example,
receiving a purchase order involves entering the

mformation 1nto the database, updating the
inventory, notifying accounting, printing a ship-
ping order, and so on Such office LLTs mmec
real procedures and hence can cope with inter-
leaved transactions In reality, one does not phy-
sically lock the warehouse until a purchase order
1s fully processed Thus there 18 no need for the
computerized procedures to lock out the nven-
tory database until they complete

Once agam, the bank and office LLTs we
have presented are not just collections of normal
transactions, they are sagas There 1s an apphca-
tion “constraint” (not representable by the data-
base consistency const.ramts) that the steps of
these activities should not be left unfinished The
applications demand that all accounts be pro-
cessed or that the purchase order 1s fully pro-
cessed If the purchase order 1s not successfully
completed, then the records must be straightened
(e g , inventory should not reflect the departure of
the 1tem) In the bank example, 1t may always
be possible to move forward and finish the LLT
In this case, 1t may not be necessary to ever com-
pensate for an unfinished LLT

The notion of saga 1s related to several
existing concepts For example, a saga 1s hke a
nested transaction [Mossa,Lync83a,Lync86a),
except that

(a) A saga only permits two levels of nesting
the top level saga and simple transactions,
and

(b) At the outer level full atomicity 1s not pro-
vided That 18, sagas may view the partial

results of other sagas

Sagas can also be viewed as special types of tran-
sactions running under the mechanisms described
mn [Garc83a] The restrictions we have placed on
the more general mechanisms make 1t much
simpler to implement (and understand) sagas, 1n
consequence making it more likely that they be
used 1n practice

Other related 1deas include [Giff85a}, which
describes "independent atomic actions”, similar to
sagas, and [Kort85a] which considers long tran-
sactions 1n a CAD environment EMPACT, a dis-
tributed database apphcation described
in [Norm83a], uses "suspense files" containing
update transactions to be run at remote systems
to 1mplement updates of replicated distributed
data

Two ingredients are necessary to make
sagas feasible a DBMS that supports sagas, and

251

LLT’s that are broken into sequences of transac-
tions In this paper we focus on how to obtain
these ingredients 1n a centralized database sys-
tem Note that since the concept of saga 1s quite
simple, one does not require complex or novel
implementation mechanisms (As a matter of
fact, as discussed mn Section 7, sagas can be fully
implemented on top of an existing DBMS) Thus,
the emphasis 1n this paper 1s not on presenting
novel 1mplementation techmques but on suggest-
ing the appropriate ones for a simple, clean, and
efficient 1mplementation of sagas

In Section 2 through 7 we study the imple-
mentation of a saga processing mechanmism We
start by discussing how an application program-
mer can define sagas, and then how the system
can support them We imtially assume that com-
pensating transactions can only encounter system
faillures Later on, in Section 6, we study the
effects of other failures (e g, program bugs) 1n
compensating transactions Due to space himita-
tions, we only discuss sagas in a centrahized sys-
tem, although clearly they can be implemented 1n
a distributed database system

In Sections 8 and 9 we address the design of
LLTs We first show that our model of sequential
transaction execution for a saga can be general-
1zed to include parallel transaction execution and
hence a wider range of LLTs Then we discuss
some strategies that an apphcation programmer
may follow mn order to write LLTs that are
indeed sagas and can take advantage of our pro-
posed mechamsm

2. USER FACILITIES

From the point of view of an application
programmer, a mechamsm 1s required for inform-
ing the system of the beginning and end of a
saga, the beginning and end of each transaction,

and the compensating transactions Thas
mechanism could be similar to the one used in
conventional systems to manage

transactions [Gray78al

In particular, when an application program
wishes to 1mitiate a saga 1t 1ssues a begin-sage
command to the system This 1s followed by a
series of begin-transaction, end-transaction com-
mands that indicate the boundanes of each tran-
saction Between transactions the application
can perform operations that do not mvolve access
to the database, such as manipulation of local
variables Within a transaction the application
can 1ssue conventional database access com-

mands In addition, 1t can optionally start a
user-imtiated abort by 1ssung an abort-
transactton command This terminates the
current transaction, but not the saga Simlarly,
there 18 an abort-saga command to abort first the
currently executing transaction and second the
entire saga (by running compensating transac-
tions) Finally, there 1s an end-saga command to
commt the currently executing transaction (if
any) and to complete the saga

Most of these commands will include van-
ous parameters The begin-saga command can
return a saga 1identifier to the program This
1dentifier can then be passed to the system on
subsequent calls made by the saga An abort-
transaction command will include as a parameter
the address where saga execution 1s to continue
after the abortion Each end-transaction call
includes the identification of the compensating
transaction that must be executed in case the
currently ending transaction must be rolled back
The 1dentification includes the name and entry
pomnt of the compensating program, plus any
parameters that the compensating transaction
may need (We assume that each compensating
program 1ncludes its own begin-transaction and
end-transaction calls Abort-transaction and
abort-saga commands are not allowed within a
compensating transaction) Finally, the abort-
saga command may include as a parameter a
save-point 1dentifier, as described below

Note that 1t 15 possible to have each tran-
saction store 1n the database the parameters that
its compensating transaction may need 1n the
future In this case, the parameters do not have
to be passed by the system, they can be read by
the compensating transaction when 1t starts
Also note that if an end-saga command ends both
the last transaction and the saga, there 1s no
need to have a compensating transaction for the
last transaction If instead a separate end-
transaction 1s used, then it will have to include
the 1dentification of a compensating transaction

In some cases 1t may be desirable to let the
application programmer indicate through the
save-pomnt command where saga check pownts
should be taken This command can be issued
between transactions It forces the system to
save the state of the running apphcation program
and returns a save-point identsfier for future
reference The save points could then be useful 1n
reducing the amount of work after a saga failure
or a system crash instead of compensating for all

252

of the outstanding transactions, the system could
compensate for transactions executed since the
last save point, and then restart the saga

Of course, this means that we can now have
executions of the type Ty, Ty, Co, Ty, T3, Ty,
Ts, Cs, Oy, Ty, Ts, Tg (After successfully
executing T’y the first time, the system crashed
A save-point had been taken after T';, but to res-
tart here, the system first undoes T'5 by running
Cs Then the saga can be restarted and T,
reexecuted A second failure occurred after the
execution of T'5) This means that our definition
of valid execution sequences given above must be
modified to include such sequences If these par-
tial recovery sequences are not vahd, then the
system should either not take save-points, or 1t
should take them automatically at the beginning
(or end) of every transaction

The model we have described up to now 1s
the quite general, but 1n some cases 1t may be
easier to have a more restrictive one We will
discuss such a restrictive model later on in Sec-
tion 5

3. SAVING CODE RELIABLY

In a conventional transaction processing
system, application code 1s not needed to restore
the database to a consistent state after a crash
If a faylure destroys the code of a runmng tran-
saction, the system logs contains enough informa-
tion to undo the effects of the transaction In a
saga processing system, the situation 1s different
To complete a running saga after a crash 1t 1s
necessary to either complete the missing transac-
tions or to run compensating transactions to
abort the saga In either case it 1s essential to
have the required apphcation code

Transaction systems that use abstract data
types face a simlar problem Recovering an
abstract data object can involve logging opera-
tions (and mverse operations) on that data type,
rather than old and new values [Spec83a] Thus
code to implement these operations must survive
if the database 1s to be restored to a consistent
state after a crash

There are various possible solutions to this
problem One 15 to handle apphcation code as
system code 1s handled in conventional systems
Note that even though a conventional DBMS
need not save application code rehably, it must
save system code That 1s, a conventional DBMS
cannot restart if a failure destroys the code
required to run the system Thus, conventional

systems have manual or automatic procedures,
outside the DBMS 1itself, for updating and storing
backup copies of the system

In a saga processing system we could then
require that application code for sagas be defined
and updated in the same fashion Each new ver-
sion of a program created would be stored in the
current system area, as well as 1n one or more
backup areas Since the updates would not be
under the control of the DBMS, they would not

ha ntamie anaratiang and wanld nrohahly ragmre
T avuie UPCIOVIUIIO i wuulu leUdUl] Acquuc

manual intervention 1n case a crash occurs during
the update When a saga starts running, 1t
would assume that all its transactions and com-
pensating transactions have been predefined, and
1t would simply make the appropriate calls

Such an approach may be acceptable 1if
sagas are written by trusted apphcation pro-
grammers and not updated frequently If this 1s
not the case, 1t may be best to handle saga code
as part of the database If saga code 1s sumply
stored as one or more database objects, then 1its
recovery would be automatic The only draw-
back 1s that the DBMS must be able to handle
large objects, 1, the code Some systems would
not be able to do this, because their data model
does not permut large “unstructured” objects, the
buffer manager cannot manage objects that span
more than one buffer, or some other reason

If the DBMS can manage code, then rehiable
code storage for sagas becomes quite stmple The
first transaction of the saga, T, enters into the
database all further transactions (compensating
or not) that may be needed in the future When
T, commts, the rest of the saga 1s ready to
start The compensating transaction for Ty, C;
would simply remove these objects from the data-
base It 1s also possible to define transactions
incrementally For example, a compensating
transaction C, need not be entered into the data-
base until 1ts corresponding transaction I 1s
ready to commit This approach 1s shightly more
complicated but saves unnecessary database
operations

4. BACKWARD RECOVERY

When a failure interrupts a saga, there are
two choices compensate for the executed transac-
tions, backward recovery, or execute the missing
transactions, forward recovery (Of course, for-
ward recovery may not be an option in all situa-
tions) For backward recovery the system needs
compensating transactions, for forward recovery

253

1t needs save-points In this section we will
describe how pure backward recovery can be

implemented, the next will discuss mixed
backward/forward and pure forward recovery

Within the DBMS, a saga ezecuiton com-
ponent (SEC) manages sagas This component
calls on the conventional transaction ezecution
component (TEC), which manages the execution
of the individual transactions The operation of
the SEC 1s sinilar to that of the TEC the SEC

avasntas a gamac of trancastinong ag a2 unit whila
CACLUVCD @ OV1IIUD Vi VI oLIDOoVVIVIIO G0 & uxuv, YV I111©

the TEC executes a series of actions as an
(atomic) umt Both components require a log to
record the activities of sagas and transactions
As a matter of fact, 1t 1s convenient to merge
both logs into a single one, and we will assume
that this 1s the case here We will also assume
that the log 1s duplexed for reliabiity Note that
the SEC needs no concurrency control because
the transactions 1t controls can be interleaved
with other transactions

All saga commands and database actions
are channeled through the SEC Each saga com-
mand (eg, begin-saga) 1s recorded in the log
before any action 1s taken Any parameters con-
tained 1n the commands (e g, the compensating
transaction 1identification 1n an end-transaction
command) are also recorded n the log The
begin-transaction and end-transaction commands,
as well as all database actions, are forwarded to
the TEC, which handles them 1n a conventional
way [Gray78a)

When the SEC receives an abort-saga com-
mand 1t 1mitiates backward recovery To illus-
trate, let us consider a saga that has executed
transactions I, and T3, and that halfway
through the execution of T'3 1ssues an abort-saga
command to the SEC The SEC records the com-
mand in the log (to protect agamnst a crash dur-
mg roll back) and then instructs the TEC to
abort the current transaction T3 This transac-
tion 1s rolled back using conventional techmgques,
e g, by storing the “before” values (found in the
log) back into the database

Next the SEC consults the log and orders
the execution of compensating transactions Cj
and C; If the parameters for these transactions
are 1 the log, they are extracted and passed in
the call The two transactions are executed just
hike other transactions, and of course, the infor-
mation as to when they begin and commit 1s
recorded 1n the log by the TEC (If there 1s a
crash during this time, the system will then be

able to know what work remains to be done)
When C; commits, the saga terminates An

entry 1s similar to the one

made 1n the lo

made 1 the log

created by the end-saga command

The log 1s also used to recover from crashes
After a crash, the TEC 1s first invoked to clean
up pending transactions Once all transactions
are either aborted or committed, the SEC evalu-
ates the status of each saga If a saga has
corresponding begin-saga and end-saga entries in
the log, then the saga completed and no further
action 1s necessary If there is a missing end-saga
entry, then the saga 1s aborted By scanming the
log the SEC discovers the i1dentity of the last suc-

- CS 1] aatad trancan_
cessfully executed and uncompensated transac-

tion Compensating transactions are run for this
transaction and all preceeding ones

5. FORWARD RECOVERY

For forward recovery, the SEC requires a
reliable copy of the code for all missing transac-
tions plus a save-point The save point to be
used may be specified by the application or by
the system, depending on which aborted the saga
(Recall that a save-point 1dentifier can be
included as a parameter to the abort-saga com-
mand) In the case of a system crash, the
recovery component can specify the most recent
save pomt for each active saga

To 1llustrate the operation of the SEC
this case, consider a saga that executes transac-
tions Ty, Ty, a save-point command, and tran-
saction T3 Then during the execution of tran-
saction T4 the system crashes Upon recovery,
the system must first perform a backward
recovery to the save-pomnt (aborting T’y and run-
ning C3) After ensuring that the code for run-
nng T3, Ty, 1s available, the SEC records in
the log 1t decision to restart and restarts the
saga We call this backward/forward recovery

As mentioned in Section 2, if save-points
are automatically taken at the beginning of every
transaction, then pure forward recovery is feasi-
ble If we mn addition prohibit the use of abort-
saga commands, then 1t becomes unnecessary to
ever perform backward recovery ' (Abort-
transaction commands would still be acceptable)
This has the advantage of ehminating the need

t In this case we must also assume that every sub-
transaction 1n the saga will eventually succeed 1f
it 18 retried enough times

254

for compensating transactions, which may be
difficult to write in some applications (see Section
9)

In this case the SEC becomes a simple “per-
sistent” transaction executor, simlar to per-
sistent message transmission
mechamsms [Hamm80a] After every crash, for
every active saga, the SEC instructs the TEC to
abort the last executing transaction, and then
restarts the saga at the point where this transac-
tion had started

We can sumphfy this further if we simply
view a saga as a file contamning a sequence of
calls to individual transaction programs Here
there 1s no need for explicit begin or end saga nor
begin or end transaction commands The saga
begins with the first call in the file and ends with
the last one Furthermore, each call 1s a transac-
tion The state of a running saga 1s simply the
number of the transaction that 1s executing This
means that the system can take save-points after
each transaction with very hittle cost

Such pure forward recovery methods would
be useful for simple LLTs that always succeed
The LLT that computes interest payments for
back accounts may be an example of such a LLT
The interest computation on an individual
account may fail (through an abort-transaction
command), but the rest of the computations
would proceed unaffected

Using operating system terminology, the
transaction file model described above could be
called an EXEC (or a SCRIPT or a BATCH)
However, all EXEC facilities we know of are not
persistent 1n our sense (e g, a failled EXEC may
simply be restarted at the beginning, without
compensation)

6. OTHER ERRORS

Up to this point we have assumed that the
user-provided code 1n compensating transactions
does not have bugs But what happens if a com-
pensating transaction cannot be successfully com-
pleted due to errors (e g, 1t tries to read a file
that does not exist, or there 1s a bug 1 the code)?
The transaction could be aborted, but if it were
run again it would probably encounter the same
error In this case, the system 1s stuck 1t cannot
abort the transaction nor can 1t complete 1t A
stmilar situation occurs if 1n a pure forward
scenario a transaction has an error

One possible solution 1s to make use of
software fault tolerant techniques along the lines
of recovery blocks [Ande8la,Horn74a] A
recovery block 1s an alternate or secondary block
of code that 1s provided in case a failure 1s
detected 1n the primary block If a failure s
detected the system 1s reset to its pre-primary
state and the secondary block 1s executed The
secondary block 1s designed to achieve the same
end as the primary using a different algorithm or
technique, hopefully avoiding the primary’s
failure

The recovery block 1dea translates very
easily imnto the framework of sagas Transactions
are natural program blocks, and rollback capabil-
ity for failed transactions 1s provided by the
TEC The saga apphcation can control recovery
block execution After 1t aborts a transaction (or
1s notified that 1ts transaction has been aborted),
the application either aborts the saga, tries an
alternative transaction, or retries the primary
Note that compensating transactions can be
given alternates as well to make aborting sagas
more reliable

The other possible solution to this problem
1s manual intervention The erroneous transac-
tion 1s first aborted Then 1t 1s given to an appli-
cation programmer who, given a description of
the error, can correct 1t The SEC (or the apph-
cation) then reruns the transaction and continues
processing the saga

Fortunately, while the transaction 1s being
manually repaired the saga does not hold any
database resources (1e, locks) Hence, the fact
that an already long saga will take even longer
will not significantly affect performance of other
transactions

Relying on manual intervention 1s defimtely
not an elegant solution, but 1t 1s a practical one
The remaining alternative 1s to run the saga as a
long transaction When this LLT encounters an
error 1t will be aborted 1n 1ts entirety, potentially
wasting much more effort Furthermore, the bug
will still have to be corrected manually and the
LLT resubmitted The only advantage 1s that
during the repair, the LLT will be unknown to
the system In the case of a saga, saga will con-
tinue to be pending n the system until the
repaired transaction is nstalled

255

7. IMPLEMENTING SAGAS ON TOP OF
AN EXISTING DBMS

In our discussion of saga management we
have assumed that the SEC 1s part of the DBMS
and has direct access to the log However, 1n
some cases 1t may be desirable to run sagas on an
existing DBMS that does not directly support
them This 1s possible as long as the database
can store large unstructured objects (1e, code
and save-points) However, 1t involves giving the
application programmer more responsibilities and
possibly hurting performance

There are basically two things to do to run
sagas without modifying the DBMS internals at
all First, the saga commands embedded in the
apphcation code become subroutine calls (as
opposed to system calls) (The subroutines are
loaded together with the application code) Each
subroutine stores within the database all the
mmformation that the SEC would have stored 1n
the log For example, the begin-saga subroutine
would enter an 1dentification for the saga mn a
database table of active sagas The save-point
subroutine would cause the application to save 1ts
state (or a key portion of 1ts state) in a simlar
database table Similarly, the end-transaction
subroutine enters nto some other table(s), the
1dentafication of the ending transaction and its
compensating transaction before executing an

end-transaction system call (to be processed by
the TEC)

The commands to store saga information
(except save-pomnt) in the database must always
be performed within a transaction, else the mfor-
mation may be lost mn a crash Thus, the saga
subroutines must keep track of whether the saga
1s currently executing a transaction or not This
can easily be achieved if the begin-transaction
subroutine sets a flag that 1s reset by the end-
transaction one All database storage actions
would be disallowed if the flag 1s not set Note
that the subroutine approach only works if the
application code never makes system calls on 1ts
own For nstance, if a transaction 1s terminated
by an end-transaction system call (and not a sub-
routine call), then the compensating mformation
will not be recorded and the transaction flag will
not be reset

Second, a special process must exist to
implement the rest of the SEC functions This
process, the saga daemon (SD) would always be
active It would be restarted after a crash by the
operating system After a crash 1t would scan

the saga tables to discover the status of pending
sagas This scan would be performed by submit-
ting a database transaction The TEC will only
execute this transaction after transaction
recovery 1s complete, hence the SD will read con-
sistent data Once the SD knows the status of
the pending sagas, 1t 1ssues the necessary compen-
sating or normal transactions, just as the SEC
would have after recovery Care must be taken
not to interfere with sagas that started nght
after the crash, but before the SD submitted 1ts
database query

After the TEC aborts a transaction (eg,
because of a deadlock or a user imtiated abort),
1t may simply kill the process that imtiated the
transaction In a conventional system this may
be fine, but with sagas this leaves the saga
unfimished If the TEC cannot signal the SD
when this occurs, then the SD will have to period-
ically scan the saga table searching for such a
situation If found, the corrective action 1s
mnmediately taken

A running saga can also directly request
services from the SD For instance, to perform an
abort-saga, the abort-saga subroutine sends the
request to the SD and then (if necessary) executes
an abort-transaction

8. PARALLEL SAGAS

Our model for sequential transaction execu-
tion within a saga can be extended to include
parallel transactions This could be useful mn an
application where the transactions of a saga are
naturally executed concurrently For example,
when processing a purchase order, 1t may be best
to generate the shipping order and update
accounts receivable at the same time

We will assume that a saga process (the
parent) can create new processes (children) with
which 1t will run in parallel, with a request sim-
lar to a fork request in UNIX The system may
also provide a jJomn capabiity to combine
processes within a saga

Backward crash recovery for parallel sagas
1s ssmlar to that for sequential sagas Within
each process of the parallel saga, transactions are
compensated for (or undone) in reverse order just
as with sequential sagas In addition, all compen-
sations 1n a child process must occur before any
compensations for transactions 1n the parent that
were executed before the child was created
(forked) (Note that only transaction execution
order within a process and fork and join informa-

256

tion constramn the order of compensation If T,
and T have executed in parallel processes and
T, has read data wntten by T, compensating

for T, does not force us to compensate for T’y
first)

Unlike backward crash recovery, backward
recovery from a saga failure 1s more complicated
with parallel sagas because the saga may consist
of several processes, all of which must be ter-
minated For this, 1t 1s convement to route all
process fork and join operations through the SEC
so 1t can keep track of the process structure of
the saga When one of the saga processes
requests an abort-saga, the SEC kills all processes
mvolved 1n the saga It then aborts all pending
transactions and compensates all committed ones

Forward recovery 1s even more complicated
due to the possibibity of “inconsistent” save-
points To 1illustrate, consider the saga of Figure
81 Each box represents a process, within each
box 1s the sequence of transactions and save-
points (sp) executed by the process The lower
process was forked after T1 committed Suppose
that 78 and T5 are the currently executing tran-
sactions and that save-points were executed
before T1 and T5

TOT1—>T2——->T3

>T4T5

Figure 8 1 - Parallel Saga

At this pomnt the system fails The top pro-
cess will have to be restarted before T1 There-
fore, the save-point made by the second process 1s
not useful It depends on the execution of Tl
which 1s being compensated for

This problem 1s known as cascading roll
backs It has been analyzed in a scenario where
processes communicate via messages or shared
data objects [Hadz82a,Rand78a] There 1t 1s
possible to analyze save-pomnt dependencies to
arnve at a consistent set of save-pomts (if 1t
exists) The consistent set can then be used to
restart the processes With parallel sagas, the
situation 1s even simpler since save-point depen-
dencies arise only through forks and joins, and

transaction and save-pomnt order within a pro-
cess

To arrive at a consistent set of save-points,
the SEC must again be informed of process fork-
ing and jomning The mformation must be stored
on the log and analyzed at recovery time The
SEC chooses the latest save-pomnt within each
process of the saga such that no earher transac-
tion has been compensated for (A transaction is
earlier than a save-point if 1t would have to be
compensated for after a transaction that had
executed 1n place of that save-point) If there 1s
no such save-point 1n a process, that entire pro-
cess must be rolled back For those processes
with save-points, the necessary backward
recoveries can be conducted and the processes
restarted

9. DESIGNING SAGAS

The saga processing mechamsms we have
described will only be of use if apphcation pro-
grammers write their LLTs as sagas Thus the
following questions immediately arise How can a
programmer know if a given LLT can be safely
broken up mmto a sequence of transactions’ How
does the programmer select the break points?
How difficult 1s 1t to write compensating transac-
tions? In this section we will address some of
these 1ssues

To 1dentify potential sub-transactions
within a LLT, one must search for natural divi-
sions of the work being performed In many
cases, the LLT models a series of real world
actions, and each of these actions 1s a candidate
for a saga transaction For example, when a
umversity student graduates, several actions
must be performed before his or her diploma can
be issued the library must check that no books
are out, the controller must check that all hous-
mmg bills and twtion bills are checked, the
student’s new address must be recorded, and so
on Clearly, each of these real world actions can
be modeled by a transaction

In other cases, 1t 1s the database 1tself that
1s naturally partitioned into relatively indepen-
dent components, and the actions on each com-
ponent can be grouped into a saga transaction
For example, consider the source code for a large
operating system Usually the operating system
and 1ts programs can be divided into components
like the scheduler, the memory manager, the
mterrupt handlers, et¢c A LLT to add a tracing
facility to the operating system can be broken up

257

so that each transaction adds the tracing code to
one of the components Similarly, if the data on
employees can be sphit by plant location, then a
LLT to give a cost-of-hving raise to all employees
can be broken up by plant location

Designing compensating transactions for
LLTs 1s a difficult problem sn general (For
mstance, if a transaction fires a missile, 1t may
not be possible to undo this action) However, for
many practical applications 1t may be as simple
(or difficult) as writing the transactions them-
selves In fact, Gray notes in [Gray8la] that,
transactions often have corresponding compensat-
g transactions within the apphcation transac-
tion set This 1s especially true when the transac-
tion models a real world action that can be
undone, hke reserving a rental car or 1ssuing a
shipping order In such cases, writing either a
compensating or a normal transaction 1s very
similar the programmer must write code that
performs the action and preserves the database
consistency constraints

It may even be possible to compensate for
actions that are harder to undo, like sending a
letter or printing a check For example, to com-
pensate for the letter, send a second letter
explaining the problem To compensate for the
check, send a stop-payment message to the bank
Of course, it would be desirable not to have to
compensate for such actions However, the price
of running LLTs as regular transactions may be
so high that one 1s forced to write sagas and their
compensating transactions

Also recall that pure forward recovery does
not require compensating transactions (see Sec-
tion 5) So if compensating transactions are hard
to write, then one has the choice of tailoring the
apphication so that LLTs do not have user -
tiated aborts Without these aborts, pure for-
ward recovery 1s feasible and compensation 1s
never needed

As has become clear from our discussion,
the structure of the database plays an 1mportant
role 1n the design of sagas Thus, 1t 1s best not to
study each LLT in 1solation, but to design the
entire database with LLTs and sagas in mind
That 1s, if the database can be laid out into a set
of loosely-coupled components (with few and sim-
ple inter-component consistency constraints), then
it 1s hkely that the LLT will naturally break up
mto sub-transactions that can be interleaved

Another techmque that could be useful for
converting LLTs mnto sagas involves storing the

temporary data of an LLT in the database 1tself
To 1illustrate, consider a LLT L with three sub-
transactions Ty, T9,and T3 In T, L performs
some actions and then withdraws a certamn
amount of money from an account stored in the
database This amount 1s stored in a temporary,
local variable until during T3 the funds are
placed in some other account(s) After T'; com-
pletes, the database 1s left 1n an inconsistent
state because some money 1s “missing,” 1e, 1t
cannot be found in the database Therefore, L
cannot be run as a saga If 1t were, a transaction
that needed to see all the money (say an audit
transaction) could run sometime between T'; and
T3 and would not find all the funds If L 1s run
as a regular transaction, then the audit 1s
delayed until L completes This guarantees con-
sistency but hurts performance

However, 1if instead of storing the missing
money in local storage L stores it in the data-
base, then the database would be consistent, and
other transactions could be interleaved To
achieve this we must incorporate into the data-
base schema the “temporary” storage (eg, we
add a relation for funds in transit or for pending
msurance claims) Also, transactions that need
to see all the money must be aware of this new
storage Hence 1t 15 best 1f this storage 1s defined
when the database 1s first designed and not added
as an afterthought

Even if L had no Tj transaction, writing
the mussing funds m the database may be con-
venlent Notice that in this case L would release
the locks on the temporary storage after Ty, only
to immediately request them agamn mn T3 This
may add some overhead to L, but in return for
this transactions that are waiting to see the
funds will be able to proceed sooner, after T
This 1s analogous to having a person with a huge
photocoping job periodically step aside and let
shorter jobs through For this the coveted
resources, 1¢, the coping machine or the funds,
must be temporarily released

We beheve that what we have stated
terms of money and LLT L holds in general The
database and the LLTs should be designed so
that data passed from one sub-transaction to the
next via local storage 15 mimmszed This tech-
nique, together with a well structured database,
can make 1t possible to write LLT’s as sagas

258

10. CONCLUSIONS

We have presented the notion of saga, a
long hived transaction that can be broken up into
transactions, but still executed as a umit Both
the concept and 1ts implementation are relatively
simple, but in 1ts simphcity hes 1ts usefulness We
beheve that a saga processing mechanmism can be
implemented with relatively little effort, either as
part of the DBMS or as an added-on facility
The mechamism can then be used by the large
number of LLTs that are sagas to improve per-
formance sigmficantly

ACKNOWLEDGMENTS

Bruce Lindsay provided several useful
suggestions, mcluding the name ‘“saga’ Rafael
Alonso, Ricardo Cordon, and the anonymous
referees also contributed a number of 1deas

This research was supported by the Defense
Advanced Research Projects Agency of the
Department of Defense and by the Office of
Naval Research under Contracts Nos N00014-
85-C-0456 and N00014-85-K-0465, by the
National Science Foundation under Cooperative
Agreement No DCR-8420948, and by an IBM
Graduate Fellowship The views and conclusions
contamned in this document are those of the
authors and should not be interpreted as neces-
sarilly representing the official policies, either
expressed or i1mphed, of the Defense Advanced
Research Projects Agency or the US Govern-
ment

References

Ande8la
Anderson, T and P A Lee, Fault Toler-
ance, Principles and Practice, Prentice-Hall
International, London, 1981

Date81a
Date, C J, An Introduction to Database
Systems, (3rd Edition), Addison-Wesley,
Reading, MA, 1981

Garc83a

Garcia-Molina, Hector, “Using Semantic
Knowledge for Transaction Processing mn a
Distributed Database,” ACM Transactions
on Database Systems, vol 8, no 2, pp 186-
213, June 1983

Giff85a
Gifford, David K and James E Donahue,
“Coordinating Independent Atomic

Actions,” Proceedings of IEEE COMPCON,
San Francisco, CA, February, 1985

Gray78a
Gray, Jim, “Notes on Data Base Operating
Systems,” 1n Operating Systems An
Advanced Course, ed G Seegmilller, pp
393-481, Springer-Verlag, 1978

Gray81a
Gray, im, “The Transaction Concept Vir-
tues and Limitations,” Proceedings of the
Seventh Int’l Conference on Very Large

Databases, pp 144-154, IEEE, Cannes,
France, Sept , 1981
Gray81b

Gray, Jim, Pete Homan, Ron Obermarck,
and Hank Korth, “A Straw Man Analysis of
Probability of Waiting and Deadlock,” IBM
Research Report RJ3066 (38112), IBM
Research Laboratory, San Jose, Califorma,
Feb, 1981

Hadz82a
Hadzilacos, Vassos, “An Algorithm for
Minimizing Roll Back Cost,” Proc ACM
Symp on PODS, pp 93-97, Los Angeles,
CA, March, 1982

Hamm80a
Hammer, Michael and Dawvid Shipman,
“Relhiability Mechanisms for SDD-1 A Sys-
tem for Distributed Databases,” ACM Tran-
sactions on Database Systems, vol 5, pp
431-466, December, 1980

Horn74a
Horning, J J, H C Lauer, P M Melhar-
Smith, and B Randell, “A Program Struc-
ture for Error Detection and Recovery,” m
Lecture Notes tn Computer Science 16, ed
C Kaiser, Springer-Verlag, Berhn, 1974

Kort85a
Korth, Henry F and Won Kim, “A Con-
currency Control Scheme for CAD Transac-
tions,” Techmcal Report TR-85-34, Dept of
Computer Science, Umv of Texas at Aus-
tin, December, 1985

Lync83a
Lynch, Nancy, “Multilevel Atomcity - A
New Correctness Criterion for Database
Concurrency Control,” ACM Trensactions
on Database Systems, vol 8, no 4, pp 484-
502, December, 1983

Lync86a
Lynch, Nancy and Michael Merntt, “Intro-

259

duction to the Theory of Nested Transac-
tions,” unpubhshed, MIT, June, 1986

Mossa Moss, J Elhot B, “Nested Transactions
An Introduction,” unpublished, US Army
War College

Norm83a
Norman, Alan and Mark Anderton,
“EMPACT A distributed database applica-
tion,” Proc National Computer Conference,
pp 203-217, AFIPS Press, 1983

Rand78a
Randell, B,P A Lee, and P C Treleaven,
“Reliability in Computing System Design,”

Computing Surveys, vol 10, no 2, pp 123-
165, ACM, June, 1978

Spec83a
Spector, Alfred Z and Peter M Schwarsz,
“Transactions A Construct for Relable
Distributed Computing,” Operating Systems
Revwew, vol 17, no 2, pp 18-35, ACM
SIGOPS, April, 1983

Ullm82a
Ullman, Jeffrey D, Prineiples of Database

Systems, (2nd Edition), Computer Science
Press, Rockville, MD, 1982

