
CS 6840 – Algorithmic Game Theory Friday, April 13, 2012

Lecture 35 Scribe Notes

Instructor: Eva Tardos Anirvan Mukherjee (am767)

1 Overview

1.1 Summary

In this lecture, we:

• Analyze the Price of Anarchy of the fair-sharing model for bandwidth sharing along a single
network edge (as introduced in the previous lecture). It turns out to be at most 4

3
.

• Introduce a new approach to bounding the PoA of a set of problems – we create a many-to-one
mapping f from our set of problems into a more restricted subset of problems, such that f
can only increase the PoA. We do this strategically so that it is easier to calculate the PoA of
the subset. This is different from approaches focused on agent behavior.

2 Context

2.1 Recap of Bandwidth Fair-Sharing

Last lecture, we introduced a bandwidth sharing problem:

• n users want to share a single edge of a network.

• Users have utility Ui(x) for bandwidth x, which is non-negative, monotone nondecreasing,
concave, and differentiable.

• Users receive allocations xi.

• The edge has total capacity B =
∑

i xi.

We came up with the following fair-sharing allocation scheme:

• Each user comes up with a bid wi representing his/her willingness to pay.

• Users pay their wi.

• Users receive a fraction of the bandwidth proportional to their bids: xi =
(

wi∑
j wj

)

B.

• If a user increases his bid, he will get more bandwidth, but also will increase peff =
∑

j wj

B
.
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2.2 Key Results from Last Lecture

Last lecture, we found that:

• Price equilibrium: U ′

i(xi) = p, e.g. when i is allocated bandwidth until marginal payoff
becomes zero.

• Proof that price equilibrium exists in the first place.

• Fair-sharing Nash Equilibrium: U ′

i(xi)
(

1− xi

B

)

= peff .

• In a case with many users, xi

B
≈ 0, so this mechanism is approximately optimal.

3 Price of Anarchy Analysis

3.1 Overview

As mentioned in the Summary, we will perform two steps which will map a given problem (specified
by a set of Ui functions) to one whose PoA is strictly not worse. We will then be able to reason
algebraically about the PoA of a simpler, restricted set of problems, and upper-bound the PoA in
the general case.

The three steps are detailed in the following subsections. We’ll use the notation: xi is the allocation
to i at Nash Equilibrium, x∗i is the optimal (in the maximum sum-of-utilities sense) allocation, and
use p to refer to peff .

3.2 Step 1: Map into the set of linear functions, Ui(x) = aixi + bi

Consider a corresponding problem in which each Ui is mapped to a new utility function Vi, which
is the tangent to Ui(x) at x = xi, the Nash allocation. Explicitly, Vi(x) = U ′

i(xi)(x− xi) + U(xi).

We see that the allocation ~x is still at Nash Equilibrium:

V ′(xi) = U ′(xi) =⇒ V ′

i (xi)
(

1−
xi
B

)

= peff

Note that the optimal social value didn’t get worse: Because Ui are concave, Vi(x
∗

i ) ≥ Ui(x
∗

i ) ∀i,
and thus there exists an allocation at least as socially optimal as the optimal allocation in the U
problem.

Because the Nash value didn’t change and the optimum didn’t decrease, the PoA did not decrease.

3.3 Step 2: Map into the space of linear functions through (0, 0), Yi(x) = aixi

Consider a correspondign problem in which each Vi(x) = aix+bi is mapped to a new utility function
Yi(x) = aix, which is Vi(x) shifted to cross the origin. We’ll show that the PoA in this restricted
subset of problems is not improved.
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First, observe that bi ≥ 0 must have been true, since Ui(0) ≥ 0 by stipulation, and b = Vi(0) ≥ Ui(0)
due to Vi never being less than Ui (a consequence of concavity). It follows that each of the Vi was
shifted down to get Wi.

Now note that Y ′(xi) = V ′(xi) = U ′(xi), so as before, the Nash allocation doesn’t change.

From these, we see that the Nash social value decreases by bΣ =
∑

i bi ≥ 0, and the optimal
allocation must have decreased by the same amount (a vertical shift does not introduce a chance to
improve the allocation).

Letting O and N be the respective total social values from utility functions Vi, we have:

O ≥ N

O ×N −N × bΣ ≥ O ×N −O × bΣ

N(O − bΣ) ≥ O(N − bΣ)

O − bΣ
N − bΣ

≥
O

N

Thus, we see that the PoA has not decreased under this mapping.

3.4 Step 3: Bound the worst PoA in the restricted problem space

At this point, we note that the socially optimal allocation awards the entire bandwith to the user
with the highest ai. For convenience, we’ll sort all users by ai, so that the optimal allocation gives
B to a1, for a total optimal utility of O′ = Ba1.

The sum of utilities at Nash, on the other hand, is N ′ =
∑

i Yi(xi) =
∑

i aixi = a1x1 +
∑

i>1
aixi.

Note that if ai ≤ p, then in the Nash allocation, xi = 0, so only people with ai > 0 contribute to
decreased social welfare. We’ll use this fact to, holding the optimal value constant now (instead of
the Nash), make the Nash value as poor as possible.

Recall that, at equilibrium, Y ′(xi) = ai
(

1− xi

B

)

= p. Rearranging this, we see that i’s utility is
Y (xi) = aixi = B (ai − p). To conceive a worst-case bound, we want to make this value as low
as possible while still allocating to i, i.e. be as wasteful as possible of this capacity xi, which was
allocated to i rather than 1. So, the worst case bound comes from choosing ai very close to p, that
is, ai = p+ε for very small ε. It follows that pxi is a lower bound on Yi(xi) = aixi, the Nash utility.
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PoA ≤ O′/N ′

=
Ba1

a1x1 +
∑

i>1
aixi

≤
Ba1

a1x1 +
∑

i>1
pxi

=
Ba1

a1x1 + p
(
∑

i>1
xi
)

=
Ba1

a1x1 + p(B − x1)

=
Ba1

a1x1 + a1
(

1− x1

B

)

(B − x1)

=
Ba1

a1x1 + a1
(

1− x1

B

)

(B − x1)

=
B

x1 + (1− x1

B
)(B − x1)

=
1

x1

B
+

(

1− x1

B

)2

Differentiating with respect to the ratio x1

B
, we find that our PoA upper bound occurs at x1

B
= 1

2

via calculus, so that worst case PoA is:

PoA ≤
1

1

2
+

(

1− 1

2

)2
=

4

3

Which is our final result.

4 Existence of Nash Equilibrium

Last lecture, we saw that there was necessarily a price equilibrium. As it turns out, an almost
identical proof works to show that there exists a Nash Equilibrium. We can even reduce the proof
of existence of a Nash Equilibrium to the same proof used for a price equilibrium:

• We seek to establish the existence of an allocation such that U ′

i(xi)
(

1− xi

B

)

= peff .

• Define ‘effective’ utility function whose derivative is U ′

i,eff (xi) = U ′

i(xi)
(

1− xi

B

)

. This can be
found by integrating by parts.

• Note that U ′

i,eff is decreasing if U ′

i(x) were decreasing, since the multiplicative factor is de-
creasing in xi, so our property of concavity is maintained.

• Since the multiplicative factor is > 0 for all xi < B, the multiplicative factor is positive, and
thus U ′

i,eff is positive.
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• Thus, this ‘effective’ utility function has the properties we required of the actual utility function
in our proof of the existence of a price equilibrium.

5 Overview of Next Lecture

• We’ll introduce a network version of the problem, in which each user has a desired path
through the network, bids for each edge e ∈ his path, and receives bandwidth equal to the
minimum of his bandwidth along any edge in the path.

• We’ll analyze a mechanism in which we run fair-sharing on each edge individually.

• We’ll show that the PoA of fair-sharing in the network game is also 4

3
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