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Abstract

We examine the relationship between the predic-
tions made by different learning algorithms and
true posterior probabilities. We show that maxi-
mum margin methods such as boosted trees and
boosted stumps push probability mass away from
0 and 1 yielding a characteristic sigmoid shaped
distortion in the predicted probabilities. Mod-
els such as Naive Bayes, which make unrealis-
tic independence assumptions, push probabilities
toward 0 and 1. Other models such as neural
nets and bagged trees do not have these biases
and predict well calibrated probabilities. We ex-
periment with two ways of correcting the biased
probabilities predicted by some learning meth-
ods: Platt Scaling and Isotonic Regression. We
qualitatively examine what kinds of distortions
these calibration methods are suitable for and
quantitatively examine how much data they need
to be effective. The empirical results show that
after calibration boosted trees, random forests,
and SVMs predict the best probabilities.

1. Introduction

In many applications it is important to predict well cali-
brated probabilities; good accuracy or area under the ROC
curve are not sufficient. This paper examines the prob-
abilities predicted by ten supervised learning algorithms:
SVMs, neural nets, decision trees, memory-based learn-
ing, bagged trees, random forests, boosted trees, boosted
stumps, naive bayes and logistic regression. We show how
maximum margin methods such as SVMs, boosted trees,
and boosted stumps tend to push predicted probabilities
away from 0 and 1. This hurts the quality of the probabili-
ties they predict and yields a characteristic sigmoid-shaped
distortion in the predicted probabilities. Other methods
such as naive bayes have the opposite bias and tend to push
predictions closer to 0 and 1. And some learning methods
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such as bagged trees and neural nets have little or no bias
and predict well-calibrated probabilities.

After examining the distortion (or lack of) characteristic to
each learning method, we experiment with two calibration
methods for correcting these distortions.

Platt Scaling: a method for transforming SVM outputs
from [−∞,+∞] to posterior probabilities (Platt, 1999)

Isotonic Regression: the method used by Zadrozny and
Elkan (2002; 2001) to calibrate predictions from boosted
naive bayes, SVM, and decision tree models

Platt Scaling is most effective when the distortion in the
predicted probabilities is sigmoid-shaped. Isotonic Regres-
sion is a more powerful calibration method that can correct
any monotonic distortion. Unfortunately, this extra power
comes at a price. A learning curve analysis shows that Iso-
tonic Regression is more prone to overfitting, and thus per-
forms worse than Platt Scaling, when data is scarce.

Finally, we examine how good are the probabilities pre-
dicted by each learning method after each method’s predic-
tions have been calibrated. Experiments with eight classi-
fication problems suggest that random forests, neural nets
and bagged decision trees are the best learning methods for
predicting well-calibrated probabilities prior to calibration,
but after calibration the best methods are boosted trees, ran-
dom forests and SVMs.

2. Calibration Methods

In this section we describe the two methods for mapping
model predictions to posterior probabilities: Platt Calibra-
tion and Isotonic Regression. Unfortunately, these methods
are designed for binary classification and it is not trivial to
extend them to multiclass problems. One way to deal with
multiclass problems is to transform them to binary prob-
lems, calibrate the binary models, and recombine the pre-
dictions (Zadrozny & Elkan, 2002).

2.1. Platt Calibration

Platt (1999) proposed transforming SVM predictions to
posterior probabilities by passing them through a sigmoid.
We will see in Section 4 that a sigmoid transformation is
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also justified for boosted trees and boosted stumps.

Let the output of a learning method be f(x). To get cali-
brated probabilities, pass the output through a sigmoid:

P (y = 1|f) =
1

1 + exp(Af + B)
(1)

where the parameters A and B are fitted using maximum
likelihood estimation from a fitting training set (fi, yi).
Gradient descent is used to find A and B such that they
are the solution to:

argmin
A,B

{−
∑

i

yilog(pi) + (1 − yi)log(1 − pi)}, (2)

where
pi =

1

1 + exp(Afi + B)
(3)

Two questions arise: where does the sigmoid train set come
from? and how to avoid overfitting to this training set?

If we use the same data set that was used to train the model
we want to calibrate, we introduce unwanted bias. For ex-
ample, if the model learns to discriminate the train set per-
fectly and orders all the negative examples before the posi-
tive examples, then the sigmoid transformation will output
just a 0,1 function. So we need to use an independent cali-
bration set in order to get good posterior probabilities. This,
however, is not a draw back, since the same set can be used
for model and parameter selection.

To avoid overfitting to the sigmoid train set, an out-of-
sample model is used. If there are N+ positive examples
and N

−
negative examples in the train set, for each train-

ing example Platt Calibration uses target values y+ and y
−

(instead of 1 and 0, respectively), where

y+ =
N+ + 1

N+ + 2
; y
−

=
1

N
−

+ 2
(4)

For a more detailed treatment, and a justification of these
particular target values see (Platt, 1999).

2.2. Isotonic Regression

The sigmoid transformation works well for some learning
methods, but it is not appropriate for others. Zadrozny
and Elkan (2002; 2001) successfully used a more general
method based on Isotonic Regression (Robertson et al.,
1988) to calibrate predictions from SVMs, Naive Bayes,
boosted Naive Bayes, and decision trees. This method is
more general in that the only restriction is that the mapping
function be isotonic (monotonically increasing). That is,
given the predictions fi from a model and the true targets
yi, the basic assumption in Isotonic Regression is that:

yi = m(fi) + εi (5)

Table 1. PAV Algorithm
Algorithm 1. PAV algorithm for estimating posterior
probabilities from uncalibrated model predictions.
1 Input: training set (fi, yi) sorted according to fi

2 Initialize m̂i,i = yi, wi,i = 1
3 While ∃ i s.t. m̂k,i−1 ≥ m̂i,l

Set wk,l = wk,i−1 + wi,l

Set m̂k,l = (wk,i−1m̂k,i−1 + wi,lm̂i,l)/wk,l

Replace m̂k,i−1 and m̂i,l with m̂k,l

4 Output the stepwise const. function:
m̂(f) = m̂i,j , for fi < f ≤ fj

where m is an isotonic (monotonically increasing) func-
tion. Then, given a train set (fi, yi), the Isotonic Regres-
sion problem is finding the isotonic function m̂ such that

m̂ = argminz

∑
(yi − z(fi))

2 (6)

One algorithm that finds a stepwise constant solution for
the Isotonic Regression problem is pair-adjacent violators
(PAV) algorithm (Ayer et al., 1955) presented in Table 1.

As in the case of Platt calibration, if we use the model train-
ing set (xi, yi) to get the training set (f(xi), yi) for Isotonic
Regression, we introduce unwanted bias. So we use an in-
dependent validation set to train the isotonic function.

3. Data Sets

We compare algorithms on 8 binary classification prob-
lems. ADULT, COV TYPE and LETTER are from UCI
Repository (Blake & Merz, 1998). COV TYPE has been
converted to a binary problem by treating the largest class
as positive and the rest as negative. We converted LETTER
to boolean two ways. LETTER.p1 treats the letter ”O” as
positive and the remaining 25 letters as negative, yielding
a very unbalanced problem. LETTER.p2 uses letters A-M
as positives and N-Z as negatives, yielding a difficult, but
well balanced, problem. HS is the IndianPine92 data set
(Gualtieri et al., 1999) where the difficult class Soybean-
mintill is the positive class. SLAC is a problem from the
Stanford Linear Accelerator. MEDIS and MG are medical
data sets. The data sets are summarized in Table 2.

Table 2. Description of problems

PROBLEM #ATTR TRAIN SIZE TEST SIZE %POZ

ADULT 14/104 4000 35222 25%
COV TYPE 54 4000 25000 36%
LETTER.P1 16 4000 14000 3%
LETTER.P2 16 4000 14000 53%
MEDIS 63 4000 8199 11%
MG 124 4000 12807 17%
SLAC 59 4000 25000 50%
HS 200 4000 4366 24%
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4. Qualitative Analysis of Predictions

In this section we qualitatively examine the calibration of
the different learning algorithms. For each algorithm we
use many variations and parameter settings to train differ-
ent models. For example, we train models using ten de-
cision tree styles, neural nets of many sizes, SVMs with
many kernels, etc. After training, we apply Platt Scal-
ing and Isotonic Regression to calibrate all models. Each
model is trained on the same random sample of 4000 cases
and calibrated on independent samples of 1000 cases. For
the figures in this section we select, for each problem, and
for each learning algorithm, the model that has the best cal-
ibration before or after scaling.

On real problems where the true conditional probabilities
are not known, model calibration can be visualized with re-
liability diagrams (DeGroot & Fienberg, 1982). First, the
prediction space is discretized into ten bins. Cases with
predicted value between 0 and 0.1 fall in the first bin, be-
tween 0.1 and 0.2 in the second bin, etc. For each bin, the
mean predicted value is plotted against the true fraction of
positive cases. If the model is well calibrated the points
will fall near the diagonal line.

We first examine the predictions made by boosted trees.
Figure 1 shows histograms of the predicted values (top
row) and reliability diagrams (middle and bottom rows) for
boosted trees on the eight test problems on large test sets
not used for training or calibration. An interesting aspect
of the reliability plots in Figure 1 is that they display a sig-
moidal shape on seven of the eight problems1, motivating
the use of a sigmoid to transform predictions into calibrated
probabilities. The reliability plots in the middle row of the
figure show sigmoids fitted using Platt’s method. The reli-
ability plots in the bottom of the figure show the function
fitted with Isotonic Regression.

Examining the histograms of predicted values (top row
in Figure 1), note that almost all the values predicted by
boosted trees lie in the central region with few predictions
approaching 0 or 1. The one exception is LETTER.P1, a
highly skewed data set that has only 3% positive class. On
this problem some predicted values do approach 0, though
careful examination of the histogram shows that even on
this problem there is a sharp drop in the number of cases
predicted to have probability near 0. This shifting of the
predictions toward the center of the histogram causes the
sigmoid-shaped reliability plots of boosted trees.

To show how calibration transforms predictions, we plot
histograms and reliability diagrams for the eight problems

1Because boosting overfits on the ADULT problem, the best
performance is achieved after only four iterations of boosting. If
boosting is allowed to continue for more iterations, it will display
the same sigmoidal shape on ADULT as in the other figures.

for boosted trees after Platt Calibration (Figure 2) and Iso-
tonic Regression (Figure 3). The figures show that calibra-
tion undoes the shift in probability mass caused by boost-
ing: after calibration many more cases have predicted prob-
abilities near 0 and 1. The reliability diagrams are closer
to diagonal, and the S-shape characteristic of boosted tree
predictions is gone. On each problem, transforming pre-
dictions using Platt Scaling or Isotonic Regression yields
a significant improvement in the predicted probabilities,
leading to much lower squared error and log-loss. One
difference between Isotonic Regression and Platt Scaling
is apparent in the histograms: because Isotonic Regression
generates a piecewise constant function, the histograms are
coarse, while the histograms generated by Platt Scaling are
smoother. See (Niculescu-Mizil & Caruana, 2005) for a
more thorough analysis of boosting from the point-of-view
of predicting well-calibrated probabilities.

Figure 6 shows the prediction histograms for the ten learn-
ing methods on the SLAC problem before calibration, and
after calibration with Platt’s method. Reliability diagrams
showing the fitted functions for Platt’s method and Iso-
tonic Regression also are shown. Boosted stumps and
SVMs2 also exhibit distinctive sigmoid-shaped reliability
plots (second and third rows, respectively, of Figure 6).
Boosted stumps and SVMs exhibit similar behavior on the
other seven problems. As in the case of boosted trees, the
sigmoidal shape of the reliability plots co-occurs with the
concentration of mass in the center of the histograms of
predicted values, with boosted stumps being the most ex-
treme. It is interesting to note that the learning methods
that exhibit this behavior are maximum margin methods.
The sigmoid-shaped reliability plot that results from pre-
dictions being pushed away from 0 and 1 appears to be
characteristic of max margin methods.

Figure 4 which shows histograms of predicted values and
reliability plots for neural nets tells a very different story.
The reliability plots closely follow the diagonal line indi-
cating that neural nets are well calibrated to begin with and
do not need post-training calibration. Only the COV TYPE
problem appears to benefit a little from calibration. On the
other problems both calibration methods appear to be striv-
ing to approximate the diagonal line, a task that isn’t nat-
ural to either of them. Because of this, scaling might hurt
neural net calibration a little. The sigmoids trained with
Platt’s method have trouble fitting the tails properly, effec-
tively pushing predictions away from 0 and 1 as can be seen
in the histograms in Figure 5. The histograms for uncali-
brated neural nets in Figure 4 look similar to the histograms
for boosted trees after Platt Scaling in Figure 2, giving us
confidence that the histograms reflect the underlying struc-

2SVM predictions are scaled to [0,1] by (x−min)/(max−
min).
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Figure 1. Histograms of predicted values and reliability diagrams for boosted decision trees.
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Figure 2. Histograms of predicted values and reliability diagrams for boosted trees calibrated with Platt’s method.
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Figure 3. Histograms of predicted values and reliability diagrams for boosted trees calibrated with Isotonic Regression.

ture of the problems. For example, we could conclude that
the LETTER and HS problems, given the available fea-
tures, have well defined classes with a small number of
cases in the “gray” region, while in the SLAC problem the
two classes have high overlap with significant uncertainty
for most cases. It is interesting to note that neural networks
with a single sigmoid output unit can be viewed as a linear
classifier (in the span of it’s hidden units) with a sigmoid
at the output that calibrates the predictions. In this respect

neural nets are similar to SVMs and boosted trees after they
have been calibrated using Platt’s method.

Examining the histograms and reliability diagrams for lo-
gistic regression and bagged trees shows that they be-
have similar to neural nets. Both learning algorithms are
well calibrated initially and post-calibration does not help
them on most problems. Bagged trees are helped a little
by post-calibration on the MEDIS and LETTER.P2 prob-
lems. While it is not surprising that logistic regression pre-
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Figure 4. Histograms of predicted values and reliability diagrams for neural nets.
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Figure 5. Histograms of predicted values and reliability diagrams for neural nets calibrated with Platt’s method.

dicts such well-calibrated probabilities, it is interesting that
bagging decision trees also yields well-calibrated models.
Given that bagged trees are well calibrated, we can deduce
that regular decision trees also are well calibrated on aver-
age, in the sense that if decision trees are trained on dif-
ferent samples of the data and their predictions averaged,
the average will be well calibrated. Unfortunately, a sin-
gle decision tree has high variance and this variance affects
it’s calibration. Platt Scaling is not able to deal with this
high variance, but Isotonic Regression can help fix some
of the problems created by variance. Rows five, six and
seven in Figure 6 show the histograms (before and after
calibration) and reliability diagrams for logistic regression,
bagged trees, and decision trees on the SLAC problem.

Random forests are less clear cut. RF models are well
calibrated on some problems, but are poorly calibrated on
LETTER.P2, and not well calibrated on HS, COV TYPE,
MEDIS and LETTER.P1. It is interesting that on these
problems, RFs seem to exhibit, although to a lesser ex-
tent, the same behavior as the max margin methods: pre-
dicted values are slightly pushed toward the middle of the
histogram and the reliability plots show a sigmoidal shape

(more accentuated on the LETTER problems and less so on
COV TYPE, MEDIS and HS). Methods such as bagging
and random forests that average predictions from a base
set of models can have difficulty making predictions near 0
and 1 because variance in the underlying base models will
bias predictions that should be near zero or one away from
these values. Because predictions are restricted to the in-
terval [0,1], errors caused by variance tend to be one-sided
near zero and one. For example, if a model should predict
p = 0 for a case, the only way bagging can achieve this is
if all bagged trees predict zero. If we add noise to the trees
that bagging is averaging over, this noise will cause some
trees to predict values larger than 0 for this case, thus mov-
ing the average prediction of the bagged ensemble away
from 0. We observe this effect most strongly with random
forests because the base-level trees trained with random
forests have relatively high variance due to feature subset-
ting. Post-calibration seems to help mitigate this problem.

Because Naive Bayes makes the unrealistic assumption that
the attributes are conditionally independent given the class,
it tends to push predicted values toward 0 and 1. This is the
opposite behavior from the max margin methods and cre-
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Figure 6. Histograms and reliability diagrams for SLAC.

ates reliability plots that have an inverted sigmoid shape.
While Platt Scaling is still helping to improve calibration,
it is clear that a sigmoid is not the right transformation to
calibrate Naive Bayes models. Isotonic Regression is a bet-
ter choice to calibrate these models.

Returning to Figure 6, we see that the histograms of the pre-
dicted values before calibration (first column) from the ten
different models display wide variation. The max margin
methods (SVM, boosted trees, and boosted stumps) have
the predicted values massed in the center of the histograms,
causing a sigmoidal shape in the reliability plots. Both
Platt Scaling and Isotonic Regression are effective at fitting
this sigmoidal shape. After calibration the prediction his-
tograms extend further into the tails near predicted values
of 0 and 1.

For methods that are well calibrated (neural nets, bagged
trees, random forests, and logistic regression), calibration
with Platt Scaling actually moves probability mass away
from 0 and 1. It is clear from looking at the reliability di-
agrams for these methods that the sigmoid has difficulty
fitting the predictions in the tails of these well-calibrated
methods.

Overall, if one examines the probability histograms before
and after calibration, it is clear that the histograms are much
more similar to each other after Platt Scaling. Calibration
significantly reduces the differences between the probabil-
ities predicted by the different models. Of course, calibra-
tion is unable to fully correct the predictions from the infe-
rior models such as decision trees and naive bayes.

5. Learning Curve Analysis

In this section we present a learning curve analysis of the
two calibration methods, Platt Scaling and Isotonic Regres-
sion. The goal is to determine how effective these calibra-
tion methods are as the amount of data available for cali-
bration varies. For this analysis we use the same models as
in Section 4, but here we vary the size of the calibration set
from 32 cases to 8192 cases by factors of two. To measure
calibration performance we examine the squared error of
the models.

The plots in Figure 7 show the average squared error over
the eight test problems. For each problem, we perform ten
trials. Error bars are shown on the plots, but are so nar-
row that they may be difficult to see. Calibration learning
curves are shown for nine of the ten learning methods (de-
cision trees are left out).

The nearly horizontal lines in the graphs show the squared
error prior to calibration. These lines are not perfectly
horizontal only because the test sets change as more data
is moved into the calibration sets. Each plot shows the
squared error after calibration with Platt’s method or Iso-
tonic Regression as the size of the calibration set varies
from small to large. When the calibration set is small (less
than about 200-1000 cases), Platt Scaling outperforms Iso-
tonic Regression with all nine learning methods. This hap-
pens because Isotonic Regression is less constrained than
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Figure 7. Learning Curves for Platt Scaling and Isotonic Regression (averages across 8 problems).

Platt Scaling, so it is easier for it to overfit when the calibra-
tion set is small. Platt’s method also has some overfitting
control built in (see Section 2). As the size of the calibra-
tion set increases, the learning curves for Platt Scaling and
Isotonic Regression join, or even cross. When there are
1000 or more points in the calibration set, Isotonic Regres-
sion always yields performance as good as, or better than,
Platt Scaling.

For learning methods that make well calibrated predictions
such as neural nets, bagged trees, and logistic regression,
neither Platt Scaling nor Isotonic Regression yields much
improvement in performance even when the calibration set
is very large. With these methods calibration is not benefi-
cial, and actually hurts performance when the the calibra-
tion sets are small.

For the max margin methods, boosted trees, boosted
stumps and SVMs, calibration provides an improvement

even when the calibration set is small. In Section 4 we saw
that a sigmoid is a good match for boosted trees, boosted
stumps, and SVMs. As expected, for these methods Platt
Scaling performs better than Isotonic Regression for small
to medium sized calibration (less than 1000 cases), and is
virtually indistinguishable for larger calibration sets.

As expected, calibration improves the performance of
Naive Bayes models for almost all calibration set sizes,
with Isotonic Regression outperforming Platt Scaling when
there is more data. For the rest of the models: KNN, RF and
DT (not shown) post-calibration helps once the calibration
sets are large enough.

6. Empirical Comparison

As before, for each learning algorithm we train differ-
ent models using different parameter settings and calibrate
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Figure 8. Performance of learning algorithms

each model with Isotonic Regression and Platt Scaling.
Models are trained on 4k samples and calibrated on inde-
pendent 1k samples. For each data set, learning algorithm,
and calibration method, we select the model with the best
performance using the same 1k points used for calibration,
and report it’s performance on the large final test set.

Figure 8 shows the squared error (top) and log-loss (bot-
tom) for each learning method before and after calibra-
tion. Each bar averages over five trials on each of the eight
problems. Error bars representing 1 standard deviation for
the means are shown. The probabilities predicted by four
learning methods — boosted trees, SVMs, boosted stumps,
and naive bayes — are dramatically improved by calibra-
tion. Calibration does not help bagged tress, and actually
hurts neural nets. Before calibration, the best models are
random forests, bagged trees, and neural nets. After cali-
bration, however, boosted trees, random forests, and SVMs
predict the best probabilities.

7. Conclusions

In this paper we examined the probabilities predicted by
ten different learning methods. Maximum margin meth-
ods such as boosting and SVMs yield characteristic dis-
tortions in their predictions. Other methods such as naive

bayes make predictions with the opposite distortion. And
methods such as neural nets and bagged trees predict well-
calibrated probabilities. We examined the effectiveness of
Platt Scaling and Isotonic Regression for calibrating the
predictions made by different learning methods. Platt Scal-
ing is most effective when the data is small, but Isotonic
Regression is more powerful when there is sufficient data to
prevent overfitting. After calibration, the models that pre-
dict the best probabilities are boosted trees, random forests,
SVMs, uncalibrated bagged trees and uncalibrated neural
nets.
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