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ABSTRACT

The processes by which communities come together, attexet n
members, and develop over time is a central research isghe in
social sciences — political movements, professional degdions,
and religious denominations all provide fundamental eXampf
such communities. In the digital domain, on-line groups lzee
coming increasingly prominent due to the growth of communit
and social networking sites such as MySpace and LiveJauroay-
ever, the challenge of collecting and analyzing largeestiahe-
resolved data on social groups and communities has left lnag#t
questions about the evolution of such groups largely utwedo
what are the structural features that influence whethewithatls
will join communities, which communities will grow rapidhand
how do the overlaps among pairs of communities change avefti
Here we address these questions using two large sourcetaof da
friendship links and community membership on LiveJouraalgl
co-authorship and conference publications in DBLP. Botthege
datasets provide explicit user-defined communities, wherger-
ences serve as proxies for communities in DBLP. We study how
the evolution of these communities relates to propertieh as
the structure of the underlying social networks. We find that
propensity of individuals to join communities, and of conmities
to grow rapidly, depends in subtle ways on the underlyingvogk
structure. For example, the tendency of an individual to fotom-
munity is influenced not just by the number of friends he orlse
within the community, but also crucially by how those frismare
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connected to one another. We use decision-tree techniqudsri-

tify the most significant structural determinants of thesmprties.

We also develop a novel methodology for measuring moventfent o
individuals between communities, and show how such movénen
are closely aligned with changes in the topics of interethiwithe
communities.

Categories and Subject Descriptors:H.2.8 Database Manage-
ment: Database Applications — Data Mining

General Terms: Measurement, Theory

Keywords: social networks, on-line communities, diffusion of in-
novations

1. INTRODUCTION

The tendency of people to come together and form groups is
inherent in the structure of society; and the ways in whicthsu
groups take shape and evolve over time is a theme that runsthr
large parts of social science research [9]. The study ofgg@und
communities is also fundamental in the mining and analyigihe-
nomena based on sociological data — for example, the ewvalofi
informal close-knit groups within a large organization gaavide
insight into the organization’s global decision-makind&aeor; the
dynamics of certain subpopulations susceptible to a diseas be
crucial in tracking the early stages of an epidemic; and tie d
cussions within an Internet-based forum can be used toddhe
emergence and popularity of new ideas and technologiesdighe
ital domain has seen a significant growth in the scale andesh
of on-line communities and social media, through the rissoafal
networking sites beginning with Friendster and its rekgivand
continuing to more recent systems including MySpace, Faaeb
and LiveJournal, as well as media-sharing sites such arFlic

Understanding the structure and dynamics of social grosips i
natural goal for network analysis, since such groups tet tem-
bedded within larger social network structures. That isegia
collection of individuals linked in an underlying socialtmerk, the
groups and communities that they identify with can be thowgh
as corresponding to subgraphs of this network, growing aed-o
lapping one another in a potentially complex fashion. A grthat
grows mainly through the agressive recruitment of frienglsther
friends would appear as a subgraph branching out rapidiytove
along links in the network; a group in which the decision tmjo
depends relatively little on the influence of friends migbpear in-



stead as a collection of small disconnected componentgtbats
in a “speckled” fashior.

While abstract descriptions such as this — of groups growing
concurrently and organically in a large network — are cleag-
gestive, the fact is that it has been very hard to make conerat
pirical statements about these types of processes. Muble ahial-
lenge arises from the difficulty in identifying and workingtkvap-
propriate datasets: one needs a large, realistic sociabrieton-
taining a significant collection of explicitly identified gups, and
with sufficient time-resolution that one can track theirgtio and
evolution at the level of individual nodes. A further challe has
been the lack of a reasonable vocabulary for talking abootigr
evolution — with each group growing in its own particular tpaf
the network, how do we abstract and quantify the common tgpes
patterns that we observe?

The present work: Analyzing Group Formation and Evolution.
In this paper we seek to address these challenges, expliréng
principles by which groups develop and evolve in largeecal-
cial networks. We consider a number of broad principles aibou
the formation of social groups, concerning the ways in whigy
grow and evolve, and we formalize concrete questions artherd
that can be tested on network data.

To do this, we take advantage of rich datasets and compniétio
models for describing the process of group formation. Itipalar,
as our primary sources of data, we make use of two networks tha
combine the desirable features outlined above: LiveJduenso-
cial networking and blogging site with several million meznband
a large collection of explicit user-defined communitiesj &BLP,
a publication database with several hundred thousand rsuther
several decades, and where conferences serve as proxasfor
munities. We will say more about these datasets below; far ne
note the crucial point that we are focusing on networks wiiege
members havexplicitly identified themselves as belonging to par-
ticular groups or communities — we are thus not seeking teesol
the unsupervised graph clustering problem of inferringniomu-
nity structures” in a network (e.g., [14, 15, 16, 20, 28]hcs for
us the relevant communities have been identified by the membe
themselves.

We consider three main types of questions.

e Membership. What are the structural features that influence
whether a given individual will join a particular group?

e Growth. What are the structural features that influence whether

a given group will grow significantly (i.e. gain a large net
number of new members) over time?

e Change. A given group generally exists for one or more
purposes at any point in time; in our datasets, for example,
groups are focused on particular “topics of interest.” Haw d

particular group as a kind of behavior that “spreads” thiotige
network, then how does one’s probabiljiyof joining a group de-
pend on the friends that one already has in the group? Pettaps
most basic such question is how the probabilitdepends on the
number of friends that one already has in the group. This is a fun-
damental question in research on diffusion in social netajcand
most mathematical models of this process implicitly positadel
for the dependence gf on k (see e.g. [13, 21, 34]); however, it
has to date been easier to explore such models theoretthalty
to obtain reasonable estimates for them empirically orel@cale
data. Here we find that this dependence is remarkably sirfaitar
groups in the LiveJournal and DBLP datasets, despite thedier
ferent meaning of the groups in these two domains; the pilityab
p increases, but sublinearly so, in the number of friehd®long-
ing to the group. The data suggest a “law of diminishing rettiat
work, where having additional friends in a group has sudcelys
smaller effect but nonetheless continues to increase taecehof
joining over a fixed time window. In the context of diffusiorod
els this result is somewhat surprising, in that it does npeapto
be explained well by models that posit logistic or “criticahss”
behavior forp versusk.

Beyond this, however, the available data makes possiblecd mu
broader investigation of membership in groups. While thtocal
models of diffusion have focused primarily on just the effefck,
the number of friends one already has in a group, we woulddike
understand more generally the structural properties teahast in-
fluential in determining membership. Here we do this by aipigia
decision-tree approach to the question, incorporatingde wange
of structural features characterizing the individual’'s position in the
network and the subgraph defining the group, as wedfasp fea-
tures such as level of activity among members. In the process we
find that the probability of joining a group depends in sulile
intuitively natural ways not just on the number of friendedras,
but also on the ways in which they are connected to one another

To take one illustrative example: for moderate valuek, @ in-
dividual with k friends in a group is significantly more likely to join
if thesek friends are themselves mutual friends than if they aren't.
This example fits naturally with known sociological dichoties
on diffusion, and hence it hints at some of the more qualigtio-
cesses at work in the communities we are studying.

We adopt a similar approach to the question of growth: given
a group, how well can we estimate whether it will grow by a sig-
nificant fraction of its current size over a fixed time periot&
find that reasonable estimation performance can be obthiset
purely on the structural properties of the group as a sulbgraghe
underlying social network. As with membership, relativelyb-
tle structural features are crucial in distinguishing bedw groups
likely to grow rapidly and those not likely to. Again, to facwn
one example, groups with a very large number of trianglesgist-
ing of three mutual friends) grow significantly less quickbyerall

such foci change over time, and how are these changes corre-than groups with relatively few triangles. Overall, thetme frame-

lated with changes in the underlying set of group members?

The question of membership is closely related to the welllisd
topic of diffusion of innovation in the social sciences (see e.g. [31,
33, 34] as well as [13, 21, 30] for more recent applicationthin
data mining literature). That is, if we view the act of joigim

Ywhile such social networks are not themselves directly mbse
able, on-line systems can provide rich data on large netvofk
interactions that are highly reflective of these underhsaogial net-
works. As has become customary in the computer science cemmu
nity, we also refer to these observable networks as sodiaionks,
while recognizing that they are only a reflection of the costypl
picture of social interactions.

work based on decision trees can be viewed as a way to idéimgify
most “informative” structural and group features influencithe
growth and membership processes, with the payoff that thatre
ing features have natural interpretations in terms of thdeuging
sociological considerations.

Groups not only grow and attract new members — the very char-
acteristics of a group can change over time. A grdupay change
its focus of interest to become more like some other grBypt
may also change its membership to become moreBik&he final
set of questions that we investigate addresses issues njetia
group membership and interests, as well as the extent tdwilnéce
is a correlation between these two types of change. Fomiostdo



changes in membership consistently precede or lag changes i
terest? While such questions are extremely natural at dtafize
level, it is highly challenging to turn them into precise gtita-

tive ones, even on data as detailed as we have here. We approac
this through a novel methodology based on burst analysis &2
identify bursts both in term usage within a group and in itsnne
bership. We find that these are aligned in time to a statlstica
significant extent; furthermore, for CS conference data BLB,

we present evidence that topics of interest tend to crosseest
conferences earlier than people do.

Related Work. As discussed above, there is a large body of work
on identifying tightly-connected clusters within a giveragh (see
e.g. [14, 15, 16, 20, 28]). While such clusters are oftenrreteto

as “communities”, it is important to note that this is a veiffedent
type of problem from what we consider here — while this cluste
ing work seeks to infer potential communities in a networkdh
on density of linkage, we start with a network in which the eom
munities of interest have already been explicitly identifd seek

to model the mechanisms by which these communities grow and
change. Dill et al. [11] study implicitly-defined “commuigs” of

a different sort: For a variety of features (e.g. a partickégyword,

a name of a locality, or a ZIP code), they consider the sulbgrap
of the Web consisting of all pages containing this featurechS
communities of Web pages are still quite different from eipy-
identified groups where participants deliberately joinpasstudy
here; moreover, the questions considered in [11] are giffereht
from our focus here.

The use of on-line social networking sites for data mining ap
plications has been the subject of a number of recent papees;
[1, 26] for two recent examples. These recent papers hauséoc
on different questions, and have not directly exploitedstinecture
of the user-defined communities embedded in these systdats. S
ies of the relationship between different newsgroups ombisgt,

35] has taken advantage of the self-identified nature ofetloes
line communities, although again the specific questiongjaie
different.

As noted earlier, the questions we consider are closelyectla
to thediffusion of innovations, a broad area of study in the social
sciences [31, 33, 34]; the particular property that is tdifig” in
our work is membership in a given group. The question of how a
social network evolves as its members’ attributes changebban
the subject of recent models by Sarkar and Moore [32] and Eolm
and Newman [19]; a large-scale empirical analysis of sawué
work evolution in a university setting was recently perfedrby
Kossinets and Watts [23]; and rich models for the evolutibtop-
ics over time have recently been proposed by Wang and Ma@allu
[36]. Mathematical models for group evolution and changesha
been proposed in a number of social science contexts; fopan a
proach to this issue in terms of diffusion models, we refertdader
to the book by Boorman and Levitt [3].

2. COMMUNITY MEMBERSHIP

Before turning to our studies of the processes by which ideiv
uals join communities in a social network, we provide sontaitie
on the two sources of data, LiveJournal and DBLP. LiveJdurna
(LJ) is a free on-line community with almost 10 million memde
a significant fraction of these members are highly activer ¢x-
ample, roughly300, 000 update their content in any given 24-hour
period.) LiveJournal allows members to maintain journiaidivid-
ual and group blogs, and — most importantly for our study here
it allows people to declare which other members are thesntis
and to which communities they belong. By joining a community

Probability of joining a community when k friends are already members
0025
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0.005

50

Figure 1: The probability p of joining a LiveJournal commu-
nity as a function of the number of friends & already in the
community. Error bars represent two standard errors.

Probability of joining a conference when k coauthors are already 'members’ of that conference

probability

Figure 2: The probability p of joining a DBLP community as a
function of the number of friends k already in the community.
Error bars represent two standard errors.

one typically gains the right to create new posts in that comity
and other people’s posts become more accessible.

DBLP, our second dataset, is an on-line database of computer
science publications, providing the title, author listj@onference
of publication for over 400,000 papers. A great deal of waoak h
gone into disambiguation of similar names, so co-authprstia-
tionships are relatively free of name resolution problefag: our
purposes, we view DBLP as parallel to the friends-and-comitias
structure of LiveJournal, with a “friendship” network dedih by
linking people together who have co-authored a paper, atid wi
conferences serving as communities. We say that a person has
joined a community (conference) when he or she first pubdishe
a paper there; and, for this section, we consider the pesbp-t
long to the community from this point onward. (See Sectioni f
an analysis of changes in community membership that inahade
tions of both joining and leaving.) For simplicity of ternailogy,
we refer to two people in either of LJ or DBLP as “friends” when
they are neighbors in the respective networks.

A fundamental question about the evolution of communitges i
determining who will join a community in the future. As dissed
above, if we view membership in a community as a kind of “be-
havior” that spreads through the network, then we can gdiialin
insight into this question from the study of the diffusionimfiova-



Table 1: Features.

Feature Set

Feature

Features

C. (Edges betwee
only members off
the community are
Ec CE)

relate
to the community,

Number of memberg ().

Number of individuals with a friend id’' (thefringe of C) .

Number of edges with one end in the community and the othdrariringe.
Number of edges with both ends in the communiBc|.

The number of open triad${(u, v, w)|(u,v) € Ec A (v,w) € Ec A (u,w
The number of closed triad$f (u, v, w)|(u,v) € Ec A (v,w) € Ec A (u,w
The ratio of closed to open triads.

The fraction of individuals in the fringe with at least k fnids in the community fo2 < k& < 19.

Ec Au # w}.

¢
) € Ec}l.

The number of responses per post.

The number of posts and responses made by members of the cityimu
The number of members of the community with at least one pogtsponse.

Number of friends in community| §]).

an individualu and
her setS of friends
in communityC.

Number of adjacent pairs il (|{(u, v)|u,v € S A (u,v) € Ec}|).

Features related tp Number of pairs inS connected via a path iBc.

Average distance between friends connected via a pafih-in

Number of community members reachable frSmsing edges itEc.
Average distance frorfi to reachable community members using edgeBdn
The number of posts and response made by individuass in

The number of individuals i with at least 1 post or response.

tion [31, 33, 34].

2.1 Dependence on number of friends

An underlying premise in diffusion studies is that an indivél’s
probability of adopting a new behavior increases with thenber
of friends already engaging in the behavior — in this casentim-
ber of friends already in the community.

In Figures 1 and 2 we show this basic relationship for LJ and
DBLP respectively: the proportioR (k) of people who join a com-
munity as a function of the numbérof their friends who are al-
ready members. For LJ, this is computed as follows.

e First, we took two snapshots of community membership, rjugh, ., (u, C, k)

one month apart.
e Then we find all triplegu, C, k) such that

— C'is a community, and

— w is a user who, at the time of the first snapshot, did not
belong toC', and

— v hadk friends inC at that time.
e P(k) is then the fraction of such triplds, C, k) for a given

k such thaw belonged taC' at the time of the second snap-
shot.

P(2) > 2P(1) for both LJ and DBLP. In other words, the marginal
benefit of having a second friend in a community is partidular
strong. However the remainder of each plot exhibits dinhiinig
returns ag increases; thus the deviationfat 0, 1, 2 can be seen
as a slight “S-shaped” effect before the sublinear behaekes
over. Focusing on the functiaR(k) for LJ, since the error bars are
smaller here, we see that the curve continues increasing feve
quite large values of. Indeed, there is a close fit to a function of
the formP(k) = alog k + b for appropriatez andb.

A key reason that the curve for LJ is quite smooth is that the
amount of data used to generate it is very large: the coriirucf
the plot in Figure 1 is based on roughly half a billion triptéghe
with & > 0. The analogous number of triples for
DBLP is 7.8 million, and the curve becomes noisy at much small
values ofk. This suggests that for computig(k) as a function
of k in the context of diffusion studies, a very large sample may b
required to begin seeing the shape of the curve clearly.

We find it striking that the curves for LJ and DBLP have such
similar shapes (including the deviations foe= 0, 1, 2), given that
the types of communities represented by these two datage¢s h
such different characteristics: joining a community is katieely
lightweight operation in LJ, requiring very little invesémt of ef-
fort, whereas the analogous act of joining in the case of tBE®
dataset requires authorship and acceptance of a confguapee

Curves with a diminishing returns property were also regent

The procedure for DBLP is analogous, except that we use a& snap observed in independent work of Leskovec et al. [25], in yet a

shot for each year, and determine the fraction of indivisiweho
“join” a conference from one year to the next.

The plots for LJ and DBLP exhibit qualitatively similar sheep
dominated by a “diminishing returns” property in which thewe
continues increasing, but more and more slowly, even fatively
large numbers of friends. This forms an interesting contrast to
the “S-shaped” curve at the heart of many theoretical modgls
diffusion, in which the probability of adopting a new betaviol-
lows a logistic function, with slow growth in adoption prdiiéty
for small numbers of friends, rapid growth for moderate values
of £, and a rapid flattening of the curve beyond this point.

In fact, the curves do exhibit some slight but noticeablet@ped”
behavior: While the plots mainly show sublinear increase ol-
serve that they each display a deviation fo= 0, 1, 2 — namely,

other different context — recommendation data for on-line- p
chases — although the curves in their case become noisieadies
values ofk. The probability of friendship as a function of shared
acquaintances and shared classes also exhibits dimigisktirns

in the work of Kossinets and Watts [23]. It is an interestingst
tion to look for common principles underlying the similaragpies
of the curves in these disparate domains.

2.2 A broader range of features

While these curves represent a good start towards mempershi
prediction, they estimate the probability of joining a commity
based on just a single feature — the number of friends anioheiV
has in the community. We now consider a range of other fesiture
related both to the communities themselves and to the tgpab



the underlying network which could also, in principle, ighce
the probability of joining a community. By applying decisitree
techniques to these features we find that we can make significa
advances in estimating the probability of an individuahjog a
community. Table 1 summarizes the features that we use. -In ad
dition to features related exclusively to the social netwstruc-
ture, we also generate simple features that serve as indicat
the activity level of a community in LJ (for example, the nuenmb
of messages posted by members of the commuhi#y)ecurring
principle in our experimental set-up is the following: srmur goal

is to understand which features from a particular set ofcttral
and activity-based features are most informative, we tidaally
control the set of features available to our algorithms.tRerstrict
goal of obtaining high prediction performance, there ahepfea-
tures that could be included that would be less informatreofir
current purposes.

Table 2: Prediction performance for single individuals joining
communities in LiveJournal. For every individual in the fri nge
of one of our 875 communities, we estimate the probability tht
person will join in a one-month interval. We repeat this expe-
iment using 3 sets of features: only the number of friends in
the community, features based on post activity (plus basich-
tures: number of friends and community size), and finally the
combination of all the features, including the graph-theoetic
ones from Table 1.

FeaturesUsed || ROCA | APR | CXE |
Number of Friends|| 0.69244| 0.00301| 0.00934
Post Activity 0.73421| 0.00316| 0.00934
All 0.75642| 0.00380| 0.00923

We now discuss the exact structure of the sets over which we Table 3: Prediction performance for single individuals joining

make predictions for both LJ and DBLP.

LiveJournal. For the more detailed studies of membership pre-
diction, we focused on a subset of 875 LJ communities, coimgar
them from the first LJ snapshot to the secdrfebr the first of these
shapshots, we also built the network structure on the coritiasin
and their fringes. (We define ttienge of a communityC' to be the
set of all non-members @' who have at least one friend @@.) In
addition, we collected all posts during the two weeks priothte
initial snapshot. (This two-week period was disjoint frdme tnitial
period during which we selected the 875 communities.)

From this information, we created a data paint C') for each
useru, and communityC' such thatu belonged to the fringe off
in the first snapshot. We then estimated the probability sach
fringe member would be in the community in the second snapsho
Note that this task is an instance of the general problemtohet
ing missing values in a matrix: we are given a matrix whosesrow
correspond to users, whose columns correspond to comesiniti
and whose entrieéu, C) indicate whethew joins C' in the time
interval between the two shapshots. In this way, the setgyn-
tactically analogous to what one sees for example in collhe-
filtering-style problems; there too one is attempting tineste hid-
den matrix-valued data (e.g. which customers are likelyup b
which books). In keeping with our design principle, howewee
are interested in performance based only on carefully sxldea-
tures of the users and communities”, rather than their actual
identities.

We have 17,076,344 data poiriis C'), and of these, only 14,488
of represent instances in which useactually joined community
C, for an average rate of 8.48e-4. Note that our task here,-to es
timate probabilities for individuals joining, is compadghwith the
low aggregate rate of joining. To make estimates aboutijginive
grow 20 decision trees. Each of the 875 communities is saldot
have all of its fringe members included in the decision traming
set or not with independent probability 0.5. At each nodehim t
decision tree, we examine every possible feature, and dmeayy

2Due to the much more regimented nature of conference activ-
ity, we do not generate analogous activity features for tBt. P
dataset.

3We chose the 875 communities as follows. We monitored all new
posts to all communities during a 10 day period. Of those com-
munities which had at least 1 post, we selected the 700 miyet ac
communities along with 300 at random from the others witleast

1 post. For technical reasons, it turned out that we werelrietta
collect accurate data on the largest of the communities hande
were forced to discard communities which started with o301
members, leaving 875 communities.

communities in DBLP. For every triple of a year, a conference
and an author who had not published in the conference, but had
coauthored with a conference member, we estimate the proba-
bility that the author will publish in the conference’s next meet-

ing.

| FeaturesUsed ]| ROCA | APR | CXE ]
Number of Friends|| 0.64560| 0.01236| 0.06123
All 0.74114| 0.02562| 0.05808

split threshold for that feature. Of all such pairs, we seded in-
stall the split which produces the largest decrease in pyti20]
(i.e. information gain). We continue to install new splitgilithere
are fewer than 100 positive cases at a node, in which case-we in
stall a leaf which predicts the ratio of positives to totaesfor that
node. Finally, for every case we find the set of decision tfees
which that case was not included in the training set useddw gr
the tree. The average of these predictions gives us a pigdicr
the case. For the few cases that we include in the trainingfset
every decision tree, we simply predict the baseline 8.48&4is
technique of model averaging [5] has been shown to be eféeirti
prediction settings such as these.

DBLP. For DBLP we perform a very similar experiment. Here
we define the fringe of a conferen€éin yeary to be those people
who have not published i& prior to yeary, but who have coau-
thored with at least one person who has published'iprior to

y. For every conference, year, and fringe member in that year w
create a data point. Of 7,651,013 data points, we find th&181,
correspond to individuals who join the conference (pubdigiaper

in it) in the year in question. Again, to make predictions vge 20
simple decision trees grown in an identical way to those fbr L

2.3 Results and Discussion

Table 2 and Table 3 summarize the performance we achieve with
these decision trees. For comparison, both tables cortaibase-
line performance one could achieve by predicting basedysote
the number of friends a fringe member already has in the commu
nity. In all of our predictions, even the people who are mid&tly
to join a community still have a probability much less tha®b0
This makes performance metrics like accuracy meaningsisse
if one had to make binary decisions, one would simply pretthiat
no one would join. We thus use performance metrics that arecba
on the order of predictions: area under the ROC curve (RO@A4) a
average precision (APR), as well as cross entropy (CXE)chvhi
treats predictions as probabilities. The two tables shatnile are



proportion of friends in community
who are friends with each other

<0.099 >0.09

proportion fringe
with = 19 friends

<1.02e-/ &OZeG

3.70e-4 7.222e-4

number of connected pairs
of friends in community

/N

1.82e-3 4.88e-3

Figure 3: The top two levels of decision tree splits for predit-
ing single individuals joining communities in LiveJournal. The
overall rate of joining is 8.48e-4.

Probability of joining a community versus adjacent pairs of friends in the community
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Figure 4: The probability of joining a LiveJournal communit y
as a function of the internal connectedness of friends alrety in
the community. Error bars represent two standard errors.

able to do significantly better by using features beyond tiraber
of friends an individual has in the community.

Internal Connectedness of Friends The top-level splits in the LJ
and DBLP decision trees were quite stable over multiple $esnp
in Figure 3 we show the top two levels of splits in a reprederga
decision tree for LJ. We now discuss a class of features thaed
particularly informative for the LJ dataset: the internahnected-
ness of an individual’s friends.

The general issue underlying this class of feature is tHeviel
ing: given someone witk friends in a community, are they more
likely to join the community if many of their friends are datéy
linked to one another, or if very few of their friends are kkto one
another? This distinction turns out to result in a signiftefect on
the probability of joining. To make this precise, we use thieofv-
ing notation. For an individual in the fringe of a community, with
a setS of friends in the community, let(.S) denote the number of
edges with both ends if. (This is the number of pairs if who
are themselves friends with each other.) 1€5) = e(S)/ (')
denote thdraction of pairs inS connected by an edge.

We find that individuals whose friends in a community aredidk
to one another — i.e., those for whiefiS) andy(S) are larger —
are significantly more likely to join the community. In paxlar,
the top-level decision tree split for the LJ dataset is based(.S),
and in the right branch (whep(S) exceeds a lower bound), the
next split is based oa(S). We can see the effect clearly by fixing
a number of friendg;, and then plotting the joining probability as

a function ofy(S), over the sub-population of instances where the
individual hask friends in the community. Figure 4 shows this
relationship for the sub-populations with= 3, 4, and5; in each
case, we see that the joining probability increases as thsitgieof
linkage increases among the individual’s friends in the wamity.

Itis interesting to consider such a finding from a theorétes-
spective — why should the fact that your friends in a communit
know each other make you more likely to join? There are socio-
logical principles that could potentially support eithétesof this
dichotomy? On the one hand, arguments basedieak ties [17]
(and see also the notion efructural holes in [6]) support the no-
tion that there is an informational advantage to havinghfigein a
community who do not know each other — this provides multiple
“independent” ways of potentially deciding to join. On thiner
hand, arguments based on social capital (e.g. [8, 9]) stdigats
there is a trust advantage to having friends in a communitg wh
know each other — this indicates that the individual will hgs
ported by a richer local social structure if he or she joirtsug, one
possible conclusion from the trends in Figure 4 is that tagstan-
tages provide a stronger effect than informational advgedtén the
case of LiveJournal community membership.

The fact that edges among one’s friends make community mem-
bership more likely is also consistent with observationgienan
recent work of Centola, Macy, and Eguiluz [7]. They conteimak t
instances of successful social diffusion “typically ufah highly
clustered networks” [7]. In the case of LJ and DBLP communi-
ties, for example, Macy observes that links among one'idise
may contribute to a “coordination effect,” in which one rives a
stronger net endorsement of a community if it is a sharedsfafu
interest among a group of interconnected friends [27].

Relation to Mathematical Models of Diffusion. There are a num-
ber of theoretical models for the diffusion of a new behavipa
social network, based on simple mechanisms in which theweha
ior spreads contagiously across edges; see for exampl21134]

for references. Many of these models operate in regimeiiesl t
steps: at each step, the nodes that have already adoptezhtngdy
may have a given probability of “infecting” their neighbpes each
node may have a given threshaldand it will adopt the behavior
onced of its neighbors have adopted it.

Now, it is an interesting question to consider how these nsode
are related to the empirical data in Figures 1 and 2. The ¢tieat
models posit very simple dynamics by which influence is tnaitis
ted: in each time step, each node assesses the states djlitisors
in some fashion, and then takes action based on this infamat
The spread of a real behavior, of course, is more complicaied
our measurements of LJ and DBLP illustrate this: we obsdrge t
behavior of an individual node’s friends in one snapshot, and
thenwu’s own behavior in the next, but we do not know (i) when or
whetheru became aware of these friends’ behavior, (ii) how long
it took for this awareness to translate into a decisiorultp act,
and (iii) how long it tooku to actually act after making this deci-
sion. (Imagine, for example, a scenario in whictecides to join a
community after seeing two friends join, but by the timactually
joins, three more of her friends have joined as well.) Moszpv
for any given individual in the LJ and DBLP data, we do not know
how far along processes (i), (ii), and (iii) are at the timeta first
snapshot — that is, we do not know how much of the information
contained in the first snapshot was already known to the ighdiv
ual, how much they observed in the interval between the firdt a

“We thank David Strang for helping to bring the arguments a@hea
side into focus.
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Figure 5: The top two levels of decision tree splits for prediting

community growth in LiveJournal.

second snapshots, and how much they never observed.

These considerations help clarify what the curves in Figidre
and 2 are telling us. The concrete property they captureigtba-
sured probability of adoption over a fixed time window, based
observed properties of an earlier snapshot — and they ddahis
network data on a scale that has been hard to obtain in eadler
cial science studies of this phenomenon. Building on thiss &
natural challenge to relate the data underlying these suo/more

Community growth rates vs. ratio of closed to open triads
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Figure 6: The rate of community growth as a function of the
ratio of closed to open triads: having a large density of closd
triads (triangles) is negatively related to growth. Error bars
represent two standard errors.

Table 4: Results for predicting community growth: baselines
based on three different features, and performance using &l
features.

purely operational models by which influence is spread tinoal |

network, and potentially to assess whether such modeleasen-
able approximations of real diffusion processes.

3. COMMUNITY GROWTH

We now turn to a different but related prediction task: idfging

FeaturesUsed || ROCA | APR | CXE | ACC |
Fringe 0.55874| 0.53560| 1.01565| 0.54451
Community Size 0.52096| 0.52009| 1.01220| 0.51179
Ratio of Fringe to Size|| 0.56192| 0.56619| 1.01113| 0.54702
Combination of above 3| 0.60133| 0.60463| 0.98303| 0.57178
All Features 0.77070| 0.77442| 0.82008| 0.70035

which communities will grow significantly over a given petiof
time. We apply decision tree techniques to this task as wsihg
the community features given in the first half of Table 1.

of averaging trees, but with only a single feature, we caosthree

For this experiment, our features come from two snapshots of baselines. The first feature for comparison is simply the sfzhe

community membership and social network topology, takenyind/
4 months apart. Since the behavior of extremely small coniimun
ties is determined by many factors that are not observabie the
network structure, we perform our experiments only on tluase-

community. One might suspect that communities with a largan
ber of people became large for a reason and are likely toraomti
growing. The second baseline uses the number of people in the
fringe of the community, as these are the people most likejgit.

munities which had at least 100 members at the time of the first Finally, we use the ratio of these two features — the size ef th

snapshot. We say that a community hagawth rate of =% if its
size in the second snapshoti% larger than its size in the first
snapshot. Over all communities, the mean growth rate wa&$4,8.
while the median growth rate was 12.7%.

We cast this problem directly as a binary classification |aob
in which class 0 consists of communities which grew by lessth
9%, while class 1 consists of communities which grew by more
than 18%. We find that by excluding the middle we achieve more
meaningful estimates of performance, as it is unreasortabé-
pect good performance in the region around a simple thrdshol
This leaves us a data set with 13570 communities, 49.4% aftwhi
are class 1.

To make predictions on this dataset we again use binaryidecis
trees. Because this data set is smaller and more balancéustakk
binary splits until a node has less than 50 data points, ichwt@se
we install a leaf which predicts the fraction of positivetarsce at
that point. We grow 100 decision trees on 100 independenplesm
of the full dataset. For a particular test case, we make aqireal
for that case using all of the decision trees which were nowgr
using that case.

3.1 Results

For comparison, we start by considering a number of simple
baseline predictions, shown in Table 4. Using the same tgaén

fringe divided by the size of the community — as well as a cembi
nation of all three.

Table 4 shows that none of these simple features gives gaged pe
formance by itself. While they each perform slightly bettiean
random guessing, the difference is small. Furthermoragusiese
three baseline features in combination still does not ywely im-
pressive results: an ROCA of 0.60133 as compared to 0.51fer ra
dom guessing.

By including the full set of features described previousigyv-
ever, we find that we can make predictions with reasonablylgoo
performance. ROCA increases to 0.77070 , while accuracg goe
up to 70%. Other performance metrics indicate improvement o
similar scales. Furthermore, accuracy on the fastest ggpaom-
munities is as high as 80%.

3.2 Discussion of Results

It is informative to look at which features are being usechat t
top-level splits made by the decision trees. Figure 5 shbevsap 2
splits installed by a representative tree. While the festand splits
in the tree varied depending on the sample, the top 2 splite we
quite stable, with only minor variations between sampldee first
of these is the number of people that have a large numbereoidsi
in the community. Given the results of the previous sectibis, is
intuitively natural. At the top level, we see that commuastivith a



higher percentage of fringe members with at least 13 friemdise
community are much more likely to be of class 1. Furthermofe,
the communities with relatively few such fringe members, tiext
split is based on individuals with 7 friends in the community

A second class of features, also important for communitygro
though for less intuitively apparent reasons, is the demsitrian-
gles. (See the right subtree in Figure 5.) Communities faickwvh
the ratio of closed to open triads is too high are unlikely rtong
Although this shows up strongly in the data (see also Figlré 6
is not entirely clear how to interpret this result. It is pb#s that
a large density of triangles indicates a kind of “cliqueisbsi’ that
makes the community less attractive to join; it is also gasgihat
high triangle density is a sign of a community that stoppedigg

Term Bursts. For a given conferenc€ and a wordw, we denote

by T, (y) the fraction of paper titles at conferen€gin yeary

that contain the worav. T, ¢ can thus be viewed as the time series
giving the frequency of wordv at C' over a sequence of years.
For each time serie®,, ¢, we identify bursts in the usage af
using a simple stochastic model for term generation thattifies
intervals in which the usage can be approximated by a “batst r
that is twice the average rate [22]. This burst detectiohnizpie
was used in [22] on the same DBLP title data, and was observed
to be effective at identifying “hot topics” at conferenc@ie same
technique has since been used for finding term bursts in @&rang
of other domains, for instance in detecting current topicblogs
[24].

new members at some point in the past and has subsequently bee For our purposes, these burst intervals serve to identéyibt

densifying, adding edges among its current set of membessard/
currently pursuing further investigations to attempt t@ipret the
role of this feature more clearly.

4. MOVEMENT BETWEEN COMMUNITIES

Having analyzed the membership and growth of communities,
we now turn to the question of how people and topics move be-
tween communities. A fundamental question here is the degre
to which people bring topics with them from one community to
another, versus the degree to which topics arise in a contynuni
and subsequently attract people from other communitiestHar
words, given a set of overlapping communities, do topicsl tien
follow people, or do people tend to follow topics? We alscegw
tigate a related question: when people move into a commanéy
they more or less likely than other members of the community t
be participants in current and future “hot topics” of dissios in
that community?

While these questions are intuitively very natural, it ishele
lenge to define sufficiently precise versions of them that ae ¢
make quantitative observations. Furthermore, any attéonpiake
these questions precise will involve certain simplificati@nd ap-
proximations, and we start by discussing the reasons besoima
of our experimental design decisions. We use the DBLP data di
cussed in earlier sections, with conferences serving asatmenu-
nities (limiting the data to 87 conferences for which ther®BLP
data over at least a 15-year time period). Since DBLP indyxde
per titles, we take the words in titles as the raw data fortifigng
topics in each community. There are a number of indicatibas t
the cumulative set of words in titles can serve, for our pegso
here, as an effective proxy for top-level topics (see e.@] &§d
some of the discussion at the end of this section).

Informally, it is easy to think of individual instances wkemwo
conferenced3 andC seemed to move “closer together” over some
period of years (for example, NIPS and ICML in the period 2000
2003 — an observation borne out by analysis of the data a3.well
We now define experiments that ask whether, in general oVer al
such movement patterns, these movements are at the leogics t
people, or both — and if both, then which kind of movement gend
to precede the other.

4.1 Time Series and Detected Bursts

Intuitively, it is possible for the same topicto be “hot” at each
of two conferencesB and C at the same time, even B andC
are not highly similar in any “global” sense. Many of the effe
we are seeking to understand have more the former flavor (acgha
hot topic) than the latter (global similarity), so we sturet our
definitions around this former notion.

topics” that indicate a focus of interest at a conference séyethat
a wordw is hot at a given conferencé€ in a yeary if the yeary
is contained in a burst interval of the time serfésc. (Note that
being a hot term is a property of three things: a term, a cenfas,
and a year.)

We also note an important caveat. Clearly it does not maksesen
to evaluate angingle paper based on whether it happens to use a
particular word in its title or not. All of our experimentahfiings
based on burst analysis, however, only consider the fraigeof
bursty words over large sets of papers, and will in all cagesup-
ported by strong findings of statistical significance. Irsthiay,
the noise inherent in specific paper titles is being smoothedy
looking across large samples.

Movement Bursts. Next, we need to define a corresponding no-
tion for author movement, and some care is needed here. éJnlik
title terms, individual people appear quite sparsely afe@mces;
even someone who is a “member” of a given conference commu-
nity will generally not publish there every year. Moreovepve-
ment is asymmetric — there may be movement from a conference
B to a conferenc€' but not vice versa— and so we need to employ
a notion that is different from a simple overlap measure.

First, we define someone to ben@mber of a conference in a
given yeary if they have published there in the 5 years leading
up toy. (In contrast to previous sections, this definition allows
someone to be a member of a conference and later not a member,
which is crucial for the kinds of analysis we do here.) We than
that authota moves into conference” from conferenceB in year
y whena has a paper in conferencg in yeary and is a member
of conferenceB in yeary — 1. Note that movement is a property
of two conferences and a specific year, and further that adtiho
this measure of movement is asymmetric, it may sometimes hol
in both directions.

Let Mp,c(y) denote the fraction of authors @tin yeary with
the property that they are moving int@ from B. Thus, Mp,c
can be viewed as a time series representing author moveareht,
we use burst detection to find intervals fin which the value
MBg,c(y) exceeds the overall average by an absolute difference of
.10.° We refer to such an interval asii— C movement burst.

We now have word burst intervals, identifying hot terms, and

SWe use an additive difference instead of a multiplicativetdato
generate the burst rate here: multiplicative burst rated te penal-
ize time series with large averages, and we need these mee si
they correspond to conference pairs with a large baseliedayy
that nonetheless experience a sharp increase. While nealins
give similar results, we use a difference.06 to define the burst
rate since it produces abo®0 burst intervals that are of moder-
ate length, about years each, over all conference p&irs, C).
By way of comparison, the word bursts average akioyears in
length.



All Papers| Papers Contrib. to Movement
Num. papers| 99774 10799
Currently hot| 0.3859 | 0.4391
Future hot 0.1740 | 0.1153
Expired hot 0.2637 | 0.3102

Table 5: Fractions of papers containing hot terms. Papers ao
tributing to a movement burst contain elevated frequencief
currently and expired hot terms, but lower frequencies of fu
ture hot terms.

movement burst intervals, identifying conference pad¥sC dur-
ing which there was significant movement. We next discussesom
experiments that investigate how these are aligned in time.

4.2 Papers Contributing to Movement Bursts

We first consider characteristics of papers associatedssitine
movement burst into a conferen€g we find that they exhibit sig-
nificantly different properties from arbitrary papergZatin partic-
ular, one crucial difference is in the extent to which theg tesms
that are currently hot af’, and the extent to which they use terms
that will be hot aiC' in the future. Given that movement bursts intu-
itively represent increased participation from some ottenmu-
nity, these differences will provide a first perspective lee general
question of whether topics are following people, or whetemple
are following topics.

We make this precise as follows. First, we say that a paper ap-

pearing at a conferend@ in a yeary contributes to some move-
ment burst aC if one of its authors is moving from some confer-
enceB into C in yeary, andy is part of aB — C movement
burst. These are precisely the papers that, intuitiveéypart of the
elevated movement from other conferences @itdNow, it is natu-
ral to ask whether these papers that contribute to movemestsh
differ from arbitrary papers in the way they use hot termsieHee
say that a paper uses a hot term if one of the words in its sitfet
for the conference and year in which it appears.

As a baseline38.59% of all papers use hot terms. (While this
number is a useful benchmark for relative comparisons,citisah
magnitude can clearly be affected by altering the settifghe
burst detection parameters.) On the other hand, as showa-in T
ble 5,43.91% of all papers contributing to movement bursts use
hot terms. This difference is statistically significantwié consider
a binary variable that is tru8859 of the time, then the probability
of seeing a sample of siZ&799 (the number of papers contribut-
ing to movement bursts) where the variable is tri891 of the time
is seen to bec 10! using a Chernoff-Hoeffding bound.

Thus it is apparent that papers written by people who aregbart
a burst of authors moving into a conference are more likelyeto
about topics that are “hot”, or experiencing a burst, thahéscase
for papers in general.

Given that papers contributing to a movement burst exhibit a
elevated usage of hot terms, it is natural to also ask whefiegr
also contain an unusually high proportion of terms thk be hot
at some point in the future, or thatre hot at some point in the past.
Specifically, we say that a paper at a conferefide yeary uses a
future hot term if it contains a word that will experience adtiat
C starting in some yeas y; we say that it uses an expired hot term
if it contains a word that experienced a burstaending in some
year < y. As shown in Table 5, we find that papers contributing
to movement bursts in fact use expired hot terms at a signtfica
higher rate than arbitrary papers at the same conferetice2(.
vs. 26.37%), but use future hot terms at a significanitbyver rate
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Figure 7: Four patterns of author movement and topical align
ment: in each of (a)-(d), the labeled arrows represent term
burst intervals for a shared hot term in conferencesB and C,
and the square wave represents & — C' movement burst. In
the terminology from the text, (a) is shared interest, (b) iscolo-
nization, (c) is exploration, and (d) is shared membership.

(11.53% vs. 17.40%). Again, these differences are statistically
significant at comparable levels.

Taken together these results support the notion that a diast
thors moving into a conferena@ from some other conferend@
are drawn to topics that are currently hotgtbut there is also evi-
dence that this burst of authors produces papers that angecabiy
impoverished in their usage of terms that will be hot in theurfe.

In other words, any notion that they are “germinating” teimat
will soon become hot at conferen€gis not borne out by the data;
in fact, the opposite appears to be true.

We now turn to a second set of experiments that explores this
temporal alignment of movement and term bursts in a differety,
but leading to qualitatively similar conclusions.

4.3 Alignment between Different Conferences

We say that conferencds andC aretopically aligned in a year
y if some wordw is hot at bothB andC' in yeary. (We will also
say thatB and C are topically alignediia w.) Note that topical
alignment, like movement, is a property of two conferenass @
specific year. Also, two conferences can be topically atigeeen
if their overall collections of papers are quite differetitey need
only share a single common focus, in the form of a hot term.

It is natural to expect that two conferences are more likelye
topically aligned in a given year if there is also a movemansb
going on between them. We first show that this is indeed the, cas
a basic result establishing that movements of terms and@eop
indeed correlated. Specifically, over all tripleB, C, y) such that
there is aB — C movement burst containing yegr we find that
56.34% have the property thaB and C' are topically aligned in
yeary. As a baseline, only6.10% of all triples (B, C,y) have
the property thatB and C' are topically aligned in yeay. Thus,
the presence of a movement burst between two conferences eno
mously increases the chance that they share a hot term.

Given this, we are now in a position to ask one of the questions
posed informally at the outset: do movement bursts or temrstbu
tend to come first? Specifically, whenever there B a> C' move-
ment burst, we look at all hot terms such thatB andC' are top-
ically aligned viaw in some yeary inside the movement burst.
There are now three events of interest:

(i) the start of the burst fow at conferenceB;
(i) the start of the burst fow at conference”; and
(iii) the start of theB — C' movement burst.
Let us consider how these might occur in order relative toame



C+ c—

() (b)
B+ | 194 (0.6025)| 32 (0.0994)

(© (d)
B— | 35(0.1087) | 61 (0.1894)

Table 6: Frequency of the four patterns relating movement aa
topical alignment. B+ (resp. B—) denotes that the burst ofw
at B follows (resp. precedes) thé8 — C' movement burst; and
analogously forC'.

other, with interpretations of each; the various ordersdeygcted
schematically in Figure 7. We then discuss how frequenthse¢h
orders actually occur in the data.

e w bursts at bottB and atC' (in some order) before thB —
C movement burst begins. (See Figure 7(a).) We call this
patternshared interest, since the topical alignment @ and
C happens before they come closer together in membership.

w bursts atB, then theB — C movement burst begins, and
thenw bursts atC. (See Figure 7(b).) We call this pattern
colonization, since one can imagine the movement frBno
C as having a “colonizing” effect, carrying the temmfrom
B (where it was already hot) 0 (where it becomes hot).

w bursts at”, then theB — C movement burst begins, and
thenw bursts atB. (See Figure 7(c).) We refer to this pat-
tern asexploration, since one can imagine the hot topiaCat
attracting authors fronB; subsequent to this “exploration”
from B, the term becomes hot &t as well.

The B — C movement burst begins, after whieh bursts
at B and atC (in some order). (See Figure 7(d).) We refer
to this pattern ashared membership, since B andC come
closer together in membership before the topical alignment
happens via the common hot teim

We now consider the relative frequencies of these four patte
Over all cases in which there was a topical alignmenBaind C'
concurrent with aB — C' movement burst, we remove from the
tabulation those in which two of the three relevant burstrivels
(for the term at each conference, and for the movement) biegan
the same year. This leaves us wiP2 instances in total, which
are divided over the four categories as shown in Tablé %! of
the instances correspond to tHeared interest pattern: the term
burst in each conference precedes the movement burst. én oth
words, of the four patterns, shared interest(§; more frequent
than the other three patterns combined. The next most fredgie
shared membership, withl instances, followed by colonization
and exploration witt85 and32 respectively.

As with the previous set of experiments, we find that the intu-
itively appealing notion of authors from a conferenBe“trans-
planting” hot terms to a new conferen€gis not in fact the domi-
nant type of movement in the data. Rather, itis much moraufrat
for conferences3 andC to have a shared burst term that is already
underway before the increase in author movement takes.place

5. CONCLUSIONS AND FURTHER DIREC-
TIONS

We have considered the ways in which communities in social
networks grow over time — both at the level of individuals and
their decisions to join communities, and at a more globatllen

which a community can evolve in both membership and content.
Even with very rich data, it is challenging to formulate thesiz
questions here, and we view the elaboration of further guesto

be an interesting direction for future work.

The availability of complex datasets on communities in abci
networks, and their evolution over time, leads naturallg s®arch
for more refined theoretical models. It will be interestingbnnect
standard theoretical models of diffusion in social netvgotd the
kinds of data on community membership that one can measure in
on-line systems such as LiveJournal. One class of questiass
suggested at the end of Section 2 — forming accurate models fo
the asynchronous processes by which nodes become awagsgrof th
neighbors’ behavior and subsequently act on it. Anothel igda
understand how even very simple diffusion models may chénge
we parametrize influence not just by the number of neighbtis w
have adopted a behavior, but by the internal connectedrfidissse
neighbors, following the findings in Section 2.

Finally, it would be interesting to relate some of the tegiueis
developed here, particularly on movement between comiesnit
to latent-space models for social networks as studied irf eliof
al. [18] and Sarkar and Moore [32]. Even without the network
aspect, the movements in content exposed by very simpletiate
space techniques are quite suggestive. For example, Fginawvs
a representation of conferences from the DBLP datasetgdexcas
term vectors and projected into a two-dimensional vectaceX
defined by Latent Semantic Indexing (LSI) [2, 10]. In eachryea
the set of conferences projects differently iltg and their col-
lective motion over successive years provides some ilitistr of
their changing relationships to one another. Such reptatens
can clearly form the basis for alternate ways of quantifydogn-
munity movement, with conferences forming natural grogpiby
topic, and with certain parts of the space becoming “filletl as
particular areas emerge over time.
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