Where is

Middleware!

Steve Vinoski * IONA Technologies * vinoski@ieee.org
his column is all about middleware, and

I ultimately, middleware is all about integra-

tion. Middleware has existed in various
forms for many years in systems such as the IBM
Customer Information Control System (CICS),
numerous message queuing systems such as IBM’s
MQ Series, the Common Object Request Broker
Architecture (Corba), Microsoft’s Component Object
Model (COM), Java 2 Enterprise Edition (J2EE), and
the latest rage, Web services. Virtually every form
of application, programming language, operating
system, and hardware has been a target of an inte-
gration effort involving these middleware systems
or their cousins. Middleware is everywhere.

The many reasons we need middleware all boil
down to one: As technology continues to evolve
at an accelerating rate, nontrivial computing sys-
tems will remain diverse and heterogeneous.!
Computing systems grow over time, which means
hardware and applications purchased years ago
must work together with those purchased just yes-
terday. Add factors such as mergers, reorganiza-
tions, leadership changes, and e-business into the
picture, and the heterogeneity in the overall sys-
tem rises sharply. As much as we might wish oth-
erwise, the complexity caused by this diversity will
not disappear anytime soon, if ever.

We’'re surrounded by examples of successfully
deployed middleware in cost-effective and effi-
cient production computing systems. Neverthe-
less, it’s interesting to note that while middle-
ware eases the diversity and heterogeneity
problem, it does not completely solve it. It’s iron-
ic that all forms of middleware attempt to reduce
complexity by introducing artificial homogene-
ity into the system, which only delays the
inevitable collision between heterogeneous sys-
tems. The very ab-stractions and simplifications
that allow middleware to address integration
issues can also cause problems between middle-
ware systems. After all, middleware systems dif-
fer from each other, and system administrators

IEEE INTERNET COMPUTING

1089-7801/02/$17.00 ©2002 IEEE

Toward Integration

eventually need to integrate two or more systems
that use different middleware.

Middleware Classification

We commonly classify (and debate) middleware
systems along several dimensions. The following
list is not exhaustive, but it still shows that many
different types of middleware are possible and nec-
essary to solve all the integration problems we face.

RPC vs. Asynchronous Messaging

At an abstract level, remote procedure calls enable
programmers to invoke (possibly remote) services
as if they were intra-application procedure calls.
Much like function or procedure calls in traditional
programming languages, RPCs block the caller’s
execution while the invoked service carries out the
caller’s request. In other words, while the called ser-
vice is busy handling the caller’s request, the call-
ing thread stops executing and waits until the
request either returns normally or encounters an
error such as a timeout condition. Messaging sys-
tems, on the other hand, are based on a queuing
abstraction in which producers post data to queues
for consumers to retrieve and act upon. Messaging
systems are typically data- or document-oriented,
while RPC systems are procedure- or object-
oriented. Middleware applications based on mes-
saging typically have key abstractions and design
centers that revolve around information, whereas
applications based on RPC center around the objects
and functions that provide system services.

Language-Specific vs. Language-Independent
Many middleware systems support the integration
of applications written in different programming
languages. Corba is probably the best example
because it explicitly supports several language
mappings for its Interface Definition Language
(IDL), which is used for defining contracts for Corba
objects. The argument for such middleware is that
complex computing systems — perhaps involving

http://computer.org/internet/

MARCH e APRIL 2002

Toward Integration

everything from handheld devices to
Windows laptops to Unix servers and
mainframes — are rarely written in a
single language. Nevertheless, many
systems, such as J2EE, are based on the
simplifying assumption that one pro-
gramming language is in use. Other
single-language distributed systems
have also been developed using C++,
Modula-3, and Smalltalk.

Proprietary vs. Standards-Based

The argument for middleware stan-
dards is that by enabling interoper-
ability and portability between prod-
ucts, they prevent “customer lock-in”
and allow users to select middleware
based on quality. In the real world,
however, this black-and-white stan-
dards ideal deteriorates into various
shades of gray as some vendors pay lip

Embedded vs. Enterprise
Middleware has historically targeted
enterprise systems, which typically in-
volve many disparate computing sys-
tems, usually including one or more
mainframes, across multiple company
divisions. Such systems normally seek
to improve business process automa-
tion. Embedded systems, with their spe-
cial hardware environments and typi-
cally stringent software requirements,
were mostly off limits for middleware
until recently. Advances in hardware
and software have made embedded
middleware viable, however, now that
developers can create embedded sys-
tems using commercial off-the-shelf
(COTS) components.? Still, embedded
middleware faces real-time deadline
and predictability constraints that often
limit its size and available features.

The most significant challenge...is facilitating
Internet-scale application-to-application integration.

service to standards while still hook-
ing customers into lock-in.

On the other hand, even those mid-
dleware vendors that stay true to stan-
dards are typically forced to introduce
proprietary features to cover areas the
standards do not address. No standard
can address all possible problems —
not even long-lived standards such as
Corba or the collection created under
the Java Community Process (www.
jcp.org). Furthermore, standardization
efforts can be lengthy, bureaucratic,
expensive, and political. Proprietary
development efforts typically seek to
avoid these negative aspects while
protecting potentially lucrative secrets
from competitors. Very large compa-
nies (such as Microsoft) or very small
vendors are normally the ones that
pursue proprietary efforts. The very
large believe their proprietary efforts
will eventually become actual or de
facto standards due to sheer volume,
and the very small often believe their
systems will be novel enough to dis-
rupt the market and force others to
standardize on their terms.

84 MARCH e APRIL 2002

Like its embedded counterpart, enter-
prise middleware also tends to address
runtime overhead, but it can typically
ignore issues such as memory footprint.
Enterprise middleware also tends to be
highly dynamically configurable, and it
requires runtime management capabil-
ities that allow system operators to
monitor for proper operation. Because
it needs to integrate a wider array of
disparate systems, users often judge
enterprise middleware mostly by how
easily it allows them to integrate new
systems. On the other hand, users typi-
cally judge real-time and embedded
middleware on memory footprint, per-
formance, and predictability.

Middleware Challenges

Despite the differences among com-
peting systems, all middleware shares
some characteristics that make it chal-
lenging to build and deploy. Foremost
among these is that everyone wants
middleware to be as flexible as possi-
ble — and to provide high levels of
performance. Given that flexibility and
performance are often mutually exclu-

http://computer.org/internet/

sive, achieving acceptable levels of
both can be tricky. Power users want
hooks into all parts of the middleware
so they can take control wherever they
deem necessary, but they also want
their applications’ performance levels
to be the same as if they were running
directly on the operating system. Too
many configuration “knobs,” on the
other hand, often frighten new users;
they want to simply install the mid-
dleware and have it work. Finding a
suitable balance between these ex-
tremes is what keeps middleware
architects and designers up at night.

As hardware performance has
increased, so has the capacity to tune
middleware through configuration,
rather than through programming. By
separating development from deploy-
ment issues, this approach lowers main-
tenance costs for middleware applica-
tions. Our goal is to be able to affect the
application’s behavior without going
back to modify, recompile, retest, and
finally redeploy its source code. The
deployment descriptor design of Enter-
prise Java Beans (EJB) is a prime exam-
ple of this approach. An unfortunate
side effect of increasing the configura-
bility of applications, however, is that
configuration has become nearly as
complicated as programming.

Reducing system complexity is in-
deed a significant challenge for middle-
ware suppliers. However, contemporary
middleware systems address such a wide
variety of problems that they themselves
have become complicated, in some
cases overly so. Clearly, middleware
designers need to make sure that their
systems are flexible, but they need to
establish reasonable default settings that
make reconfiguration unnecessary for
the most common cases.

Perhaps the most significant chal-
lenge facing middleware today is facil-
itating Internet-scale application-to-
application integration. The World
Wide Web has shown us how the
Internet can be used to support suc-
cessful consumer-to-business interac-
tions. However, its browser-Web site
architecture not only resembles the
classic two-tier application model, it

IEEE INTERNET COMPUTING

also shares some of the same limita-
tions. While traditional “back office”
integration projects, such as encapsu-
lating databases behind application
servers, are never simple nor easy, con-
temporary middleware has made them
relatively straightforward. The next
goal is to build on that success and
extend application integration from
the intranet to the Internet.

Web Services

Web services currently present the most
promising way to facilitate application-
to-application integration on the Inter-
net.> Unfortunately, the tremendous
amount of hype surrounding Web ser-
vices makes it difficult to keep their
fundamental aspects clear. Part of the
appeal is that there is nothing really
new about Web services; they simply
use the ubiquitous Internet infrastruc-
ture to apply proven approaches from
mature middleware. Web services are
based on the convergence of four tech-
nology streams.* To use them well, we
need not relearn what we’ve already
figured out the hard way.

m Ubiquitous infrastructure. Web ser-
vices operate over the ubiquitous
infrastructure of the Web, or more
accurately, the Internet. They nor-
mally communicate with other
applications via Internet protocols
such as HTTP or SMTP.

m Proven approaches. Web services
incorporate fundamental aspects of
proven middleware. They encour-
age the creation of service-orient-
ed architectures, as systems such as
Corba have done for the past de-
cade. Unlike most middleware,
though, they support both RPC-ori-
ented and message-oriented sys-
tems equally well, which makes
them extremely flexible.

m XMIL. Web services contracts are
defined in XML and communica-
tions occur via XML-based mes-
sages. XML's flexibility and ubiqui-
ty help set Web services apart from
previous middleware technologies.
Developers can use XML to repre-
sent any structured information,

IEEE INTERNET COMPUTING

and they can create and manipulate
it with domain-independent tools.
This means that Web services do
not require specialized IDLs or spe-
cialized compilers or code genera-
tors for such languages. This alone
is an enormous leap forward.

m Business standards. To facilitate
integration between trading partners,
all cooperating parties must fully
understand Web services semantics.
Electronic Data Interchange, the e-
business standard that’s been sup-
porting automated interactions
between trading partners for about
20 years, includes standardized busi-
ness processes and documents. EDI
is the forerunner of today’s XML-
based e-business standards such as
ebXML (www.ebxml.org), RosettaNet
(www.rosettanet.org), and UCCNet
(www.uccnet.org). If Web services
are to succeed on an Internet scale,
they must incorporate standard busi-
ness documents and processes to
enable correct interactions.

An important strength of Web services
is that they intentionally accommo-
date diversity and heterogeneity, not
only in applications, operating sys-
tems, and hardware platforms, but
also in other middleware systems. One
way to think of Web services is as
“middleware for middleware.” Given
that mature systems have been hurt by
their inability to incorporate useful
features and approaches from each
other, it is tremendously powerful that
Web services are “middleware agnos-
tic.” That means rather than replacing
existing middleware solutions, you
can just integrate and expand their
capabilities via Web services.

Those with a flair for the dramatic
like to create artificial technology wars,
such as “COM vs. Corba” or “RPC vs.
messaging.” They also like to make cer-
emonious declarations like “application
servers are dead,” but such actions serve
only to hurt vendors and users alike. In
real life, successful technologies never
die; technologies that some view as
competitive, such as RPC and messag-
ing, often must be applied together to

http://computer.org/internet/

Where is Middleware?

solve real-world problems. After all,
there is no one-size-fits-all solution to
the problems middleware addresses.

Only the Beginning

This column is about middleware and
how it enables integration. This being
my inaugural column in IEEE Internet
Computing, I've supplied only a brief
high-level overview of the issues and
challenges we face as middleware con-
tinues to mature and evolve. I find the
configurability of modern middleware
interesting, and I intend to explore it
further in future columns. I also dug into
Web services a bit because I believe they
hold promise as the next generation of
successful middleware, and I'll cover
them in greater depth as well. If you
have issues you'd like me to address in
future columns, or comments you’d like
to share with me on anything I've writ-
ten here, please e-mail me.

References

1. S. Vinoski, “Corba: Integrating Diverse
Applications Within Distributed Heteroge-
neous Environments,” IEEE Comm., vol. 35,
no. 2, pp. 46-55.

2. R.E. Schantz and D.C. Schmidt, “Middleware
for Distributed Systems: Evolving the
Common Structure for Network-centric
Applications,” Encyclopedia of Software
Eng., Wiley & Sons, New York, 2001; also
available at http://www.cs.wustl.edu/
~schmidt/PDF/middleware-chapter.pdf.

3. F. Curbera et. al., “Unraveling the Web Ser-
vices Web: An Introduction to SOAP, WSDL,
and UDDI,” IEEE Internet Computing, vol. 6,
no. 2, March/April 2002, pp. 86-93.

4. S.Vinoski, “The Chief Architect’s View: Web
services,” IONAsphere, IONA Technologies,
May 2001; available at http://www.iona.
com/devcenter/articles/stevev/0501sv.htm.

Steve Vinoski is vice president of platform tech-
nologies and chief architect for IONA Tech-
nologies. Vinoski helped develop several
aspects of the OMG Corba standard, including
its C++ Language Mapping and Portable
Object Adapter. He is coauthor of Advanced
CORBA Programming with C++ (Addison Wes-
ley Longman, 1999) and has written the
“Object Interconnections” column for the C++
Report and the C/C++ Users Journal with Dou-
glas C. Schmidt since 1995. Vinoski currently
serves as IONA’s representative to the W3C’s
Web Services Architecture working group.

MARCH e APRIL 2002 85

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

