Exercise 1c¢: Inverse Kinematics of the

ABB IRB 120

Marco Hutter, Michael Blosch, Dario Bellicoso, Samuel Bachmann

October 12, 2016

Figure 1: The ABB IRB 120 industrial 6-DoF Manipulator

Abstract

The aim of this exercise is to calculate the inverse kinematics of an ABB
robot arm. To do this, you will have to implement a pseudo-inversion scheme
for generic matrices. You will also implement a simple motion controller based
on the kinematics of the system. A separate MATLAB script will be provided
for the 3D visualization of the robot arm.

1 Introduction

The following exercise is based on an ABB IRB 120 depicted in Fig. [I} It is a 6-
link robotic manipulator with a fixed base. During the exercise you will implement
several different MATLAB functions, which, you should test carefully since the fol-
lowing tasks are often dependent on them. To help you with this, we have provided
the script prototypes at https://bitbucket.org/ethz-asl-1r/robotdynamics_
exercise_1c together with a visualizer of the manipulator.

54374 Z[70 | 5

4
4 1 R -
Z . -6
~
3 -3
o
N 2
S z
= 2
¥ =2
o v
(@]
Y ___E
i
; -0

X
IFP0g0

Figure 2: ABB IRB 120 with coordinate systems and joints

Throughout this document, we will employ I for denoting the inertial world coor-
dinate system (which has the same pose as the coordinate system PO in figure
and E for the coordinate system attached to the end-effector (which has the same
pose as the coordinate system P6 in Fig. |2).

2 Matrix Pseudo-Inversion

Exercise 2.1
The Moore-Penrose pseudo-inverse is a generalization of the matriz inversion op-
eration for non-square matrices. Let a non-square matrix A be defined in R™*™,
When m > n and rank(A) = n, it is possible to define the so-called left pseudo-
muverse A?‘ as

AlJr = (ATA)71AT, (1)
which yields Al+A = [,xn. If instead it is m < n and rank(A) = m, then it is
possible to define the right pseudo-inverse A} as

AF = AT(AAT) Y, (2)

which yields AA} = I, If one wants to handle singularities, then it is possible
to define a damped pseudo-inverse as

A = (ATA + X\L,,.,,) tAT, (3)

https://bitbucket.org/ethz-asl-lr/robotdynamics_exercise_1c
https://bitbucket.org/ethz-asl-lr/robotdynamics_exercise_1c

and
AF = AT(AAT + X\21,,)71, (4)

In this first exercise, you are required to provide an implementation of (3) and (4)
as a MATLAB function. The function place-holder to be completed is:

1 function pinvA = pseudoInverseMat (A, lambda)
2 % Input: Any m—by—n matrix.
% Output: An n—-Dby-m pseudo—inverse of the input according to the

Moore—Penrose formula

w

% Get the number of rows (m) and columns (n) of A
[m,n] = size(A);

© 0 N O woa

10 end

Solution 2.1

We can implement the two pseudo-inversions in one single script by checking the di-
mensions of matrix A and choosing the appropriate pseudo-inversion scheme. Note
that we could use Matlab’s inv() function to compute the inverse of AAT or ATA.
However, a more accurate method is to use the ”\” and ” /” operators, which produce
more accurate results. For more information, please check the Matlab documenta-
tion.

1 function pinvA = pseudoInverseMat (A, lambda)

% Input: Any m—by—n matrix.

3 % Output: An n—Dby-m pseudo—inverse of the input according to the
Moore—Penrose formula

o

4
5 % Get the number of rows (m) and columns (n) of A
6 [m,n] = size(A);

.

8 if (m>n)

9 % Compute the left pseudoinverse.

10 pinvA = (A'xA + lambdaxlambdaxeye (n,n))\A';
11 elseif (m<n)

12 % Compute the right pseudoinverse.

13 pinvA = A'/ (A*xA' + lambdaxlambdaxeye (m,m));

14 end

15

16 end

3 Iterative Inverse Kinematics

Exercise 3.1

Consider a desired position zrjy = [0.5649 0 0.5509] and orientation Cj, =
I5«3. We wish to find the joint space configuration q which corresponds to the
desired pose. This exercise focuses on the implementation of an iterative inverse
kinematics algorithm, which can be summarized as follows:

}T

1.q«¢° > start configuration

2. while ||x; — x. (@)]| > tol > while the solution is not reached

3. Joo < Jeo(q) = % (q) > evaluate Jacobian for q

4. I3 60)+ > update the pseudoinverse
5. Ax, + X —x.(q) > find the end-effector configuration error vector
6. g+ q+ JjoAxe > update the generalized coordinates

Note the use of the geometric Jacobian J.q, which was derived in the last exer-
cise. You should implement the algorithm by defining the orientation error as the
rotational vector extracted from the relative rotation between the desired orienta-
tion C}p and the one based on the solution of the current iteration Crg(q). The
rotational vector is hence going to defined as

Ap = [pEE: = rotMatToPhi(C?EC?E(q)) (5)

To do this, you should implement a function which extracts a rotational vector from
a rotation matrix.

1 function phi = rotMatToRotVec (C)

2 % Input: a rotation matrix C

3 % Output: the rotational vector which describes the rotation C

4 end

5

6 function g = inverseKinematics (I-r_-IE_des, C_.IE_des, g-0, tol)

7 % Input: desired end—effector position, desired end—effector
orientation (rotation matrix),

8 % initial guess for joint angles, threshold for the
stopping—criterion

9 % Output: joint angles which match desired end—effector position
and orientation

10 end

Solution 3.1

1 function phi = rotMatToRotVec (C)

2 % Input: a rotation matrix C

3 % Output: the rotational vector which describes the rotation C

4 th = acos(0.5%(C(1,1)+C(2,2)+C(3,3)—-1));

5

6 1f (abs(th)<eps)

7 n = zeros (3,1);

8 else

9 n = 1/(2+«sin(th))*[C(3,2) — C(2,3);

10 C(1,3) — C(3,1);

11 c(2,1) —C(1,2)1;

12 end

13

14 phi = thxn;

15

16 end

17

18

19

20 function g = inverseKinematics(I-r_IE_des, C_IE_des, g-0, tol)

21 % Input: desired end—effector position, desired end—effector
orientation (rotation matrix),

22 % initial guess for joint angles, threshold for the
stopping—criterion

23 % Output: joint angles which match desired end—effector position
and orientation

24

25 %% Setup

26 it = 0;

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

I_r IE_.des = I.r_IE_des (:);
q-0 = q-0(:);

o

% Set the maximum number of iterations.
max_it = 1000;

% Initialize the solution with the initial guess.
= q-0;

Q

% Damping factor.
lambda = 0.001;

% Initialize error.

C_.IE = jointToRotMat (q);
I_.r_.IE = jointToPosition(q);
C_.err = C_IE_des*C_IE"';

dph = rotMatToRotVec (C_err);
dr = I_.r_IE_des — I_r_IE;
dxe = [dr; dph];

%% Iterative inverse kinematics
% Iterate until terminating condition.
while (norm(dxe)>tol && it < max-it)

J = [jointToPosJac(q);
jointToRotJac (q)];

dg = pseudolInverseMat (J, lambda)x[dr;
dph];

% Update law.

q =g + 0.5+dg;
% Update error

C_.IE = jointToRotMat (q) ;
C_.err = C_IE_desxC_IE';

dph = rotMatToRotVec (C_err);

dr = I_.r_IE.des — jointToPosition(q);
dxe = [dr; dphl;

it = it+1;
end
fprintf ('Inverse kinematics terminated after %d iterations.\n',it);
fprintf ('Position error: %e.\n',norm(dr));

fprintf ('Attitude error: %e.\n',norm(dph));

end

4

Kinematic Motion Control

The final section in this series will demonstrate the use of the iterative inverse
kinematics method to implement a basic end-effector pose controller for the ABB
manipulator. The controller will act only on a kinematic level, i.e. it will produce
end-effector velocities as a function of the current and desired end-effector pose.
This will result in a motion control scheme which should track a series of points
defining a trajectory in the task-space of the robot. For all of this to work we will
additionally need the following functional modules:

1. A trajectory generator, which will produce an 3-by-N array, containing N

points in Cartesian space defining a discretized path that the end-effector
should track.

2. A kinematics-level simulator, which will integrate over each time-step, the
resulting velocities generated by the kinematic motion controller of the previ-
ous exercise. This integration, at each iteration, should generate an updated
configuration of the robot which is then provided to the visualization for ren-
dering.

To save time during the exercise session, we have provided functions to implement
most of the grunt work regarding the aforementioned points. The first function
provided generates a line trajectory defined between two points for a given path
duration and time step-size. The function provided is:

1 function r_traj = generatelineTrajectory(r_start, r-end, t_-total, a_-t)
2 % Inputs:

3 % r_start : start position

4 % r_end : end position

5 % t_total : total time duration (in sec)

6 % A_t : time discretization step—size (in ms)

7 % Output: 3xN matrix mapping local rotational velocities to

quaternion derivatives

o

9 N = floor (tf / ts);

10 x_traj = linspace(r.start (l),r-end(1l),N);
11 y_traj = linspace(r_start (2),r_end(2),N);
12 z_.traj = linspace(r_start (3),r-end(3),N);
13 r.traj = [x_-traj; y-traj; z_-trajl.';

14

15 end

The second script we provide, is that of the motion_control visualization.m,
which is essentially a modified version of the test_visualization.m script. Simply
running new script will begin the motion control simulation, and if unmodified, one
can observe a motion almost identical to that of the test visualization. Although
you are not required to modify the motion_control_visualization.m script: we
recommend to briefly read through it and understand what it does:

o

1 % Motor control visualization script
2

3 % Close all figures

4 close all; clear;

5

6 % Load the visualization

7 loadVisualization;

8

9 % Set the sampling time (in seconds)
10 ts = 0.05;

11

12 % Configure a new trajectory — use defaults if undefined
13 1f —exist('r.start','var'")

14 r.start = [1 1 1]."';

15 end

16 1if —exist('r_end', 'var')

17 r.end = [0.5 0.5 0.5].";

18 end

19 if —exist('tf','var')

20 tf = 15.0;

21 end

22 1if —exist('g.0','var'")

23 g-0 = zeros(6,1);

24 end

26 % Generate a new desired trajectory
27 r_traj = generatelineTrajectory(r_.start, r-end, tf, ts);

28

29 % Initialize the vector of generalized coordinates

30 g = g-0;

31

32 % Set the number of time steps

33 kf = tf/ts; % Number of iterations as a function of the duration
and the sampling time

34

35 % Notify that the visualization loop is starting

36 disp('Starting visualization loop.');

37

38 % Run a visualization loop

39 for k=1l:kf

40 try

41 % Start a timer

42 startLoop = tic;

43 % Set the updated vector of generalized coordinates.

44 g = kinematicMotionControl (tf,ts,k,q,r-traj);

45 % Set the generalized coordinates to the robot visualizer class

46 abbRobot .setJointPositions (q) ;

a7 % Update the visualization figure

48 drawnow;

49 % If enough time is left, wait to try to keep the update
frequency

50 % stable

51 residualWaitTime = ts — toc(startLoop);

52 if (residualWaitTime > 0)

53 pause (residualWaitTime) ;

54 end

55 catch

56 disp('Exiting the visualization loop.');

57 break;

58 end

50 end

60
61 % Notify the user that the script has ended.
62 disp('Visualization loop has ended.');

Exercise 4.1

The final exercise to combine the tools in the previous exercise, to implement a
kinematic controller to track a single 3D line trajectory. The function to generate
the line has been provided, however, you are required to specify the following four
parameters prior to executing the motion_control visualization.m script:

1. r_start: The start point of the trajectory.
2. r_end: The end point of the trajectory.
3. tf: The total duration of the trajectory.

4. q-0: The initial configuration of the robot.

Note however that the r_start and r_end are not specified in any particular frame
and thus it is up to you to experiment with either defining them in the end-effector
or inertial reference frames. In this exercise, you are required to place your entire
sequence of computations in the kinematicMotionControl.m file:

1 function g-new = kinematicMotionControl (tf,ts,k,g-current,r_traj)
2 % Inputs:

3 % tf : total simulation time.

4 % ts : simulation time—step.

5 s k : current iteration.

6 % qg-current : current configuration of the robot

7 % r_traj : desired Cartesian trajectory

8 % Output: Jjoint—space state of the robot to send to the
visualization.

9

10 % Total number of iterations

11 Nf = tf/ts;
12

13 % Step 1. — Sample trajectory configuration
14 omega = 0.25;
15 time = kxts;

16 Dg-max = 0.5;
17

18 % Step 2. — Compute the updated joint velocities — this would be
used for

19 % a velocity controllable robot

20 Dg = 2xpixomegaxDg-max*cos (2«pixomegaxtime) = ones(6,1);

21

22 % Step 3. — Time integration step — this is would be used for a
position

23 % controllable robot

24 g-new = g-current + Dgxts;

25

26 end

Solution 4.1
The final implementation can be solved as follows:

1 function pinvA = pseudoInverseMat (A, lambda)

2 % Inputs:

3 % tf : total simulation time.

4 % ts : simulation time—step.

5 s k : current iteration.

6 % g-current : current configuration of the robot

7 % Output: joint—space state of the robot to send to the
visualization.

8

9 % Total number of iterations

10 Nf = tf/ts;

11 Kp = 1.0;

12

13 % Step 1. — Compute the next point in the Cartesian trajectory
of the

14 % end—effector

15 rnew = r_traj(k,:).";

16

17 % Step 2. — Update step

18 r_current = jointToPosition(g-current);

19 J_current = jointToPosJac (g-current);

20 w_new = K_px(r_new — r_current);

21 Dg = J-current\w-new;

22

23 % Step 3. — Time integration step — this is would be used for a
position

24 % controllable robot

25 g-new = g-current + Dgxts;

26

27 end

	Introduction
	Matrix Pseudo-Inversion
	Iterative Inverse Kinematics
	Kinematic Motion Control

