
Exercise 1c: Inverse Kinematics of the

ABB IRB 120

Marco Hutter, Michael Blösch, Dario Bellicoso, Samuel Bachmann

October 12, 2016

Figure 1: The ABB IRB 120 industrial 6-DoF Manipulator

Abstract

The aim of this exercise is to calculate the inverse kinematics of an ABB
robot arm. To do this, you will have to implement a pseudo-inversion scheme
for generic matrices. You will also implement a simple motion controller based
on the kinematics of the system. A separate MATLAB script will be provided
for the 3D visualization of the robot arm.

1



1 Introduction

The following exercise is based on an ABB IRB 120 depicted in Fig. 1. It is a 6-
link robotic manipulator with a fixed base. During the exercise you will implement
several different MATLAB functions, which, you should test carefully since the fol-
lowing tasks are often dependent on them. To help you with this, we have provided
the script prototypes at https://bitbucket.org/ethz-asl-lr/robotdynamics_

exercise_1c together with a visualizer of the manipulator.

Figure 2: ABB IRB 120 with coordinate systems and joints

Throughout this document, we will employ I for denoting the inertial world coor-
dinate system (which has the same pose as the coordinate system P0 in figure 2)
and E for the coordinate system attached to the end-effector (which has the same
pose as the coordinate system P6 in Fig. 2).

2 Matrix Pseudo-Inversion

Exercise 2.1

The Moore-Penrose pseudo-inverse is a generalization of the matrix inversion op-
eration for non-square matrices. Let a non-square matrix A be defined in Rm×n.
When m > n and rank(A) = n, it is possible to define the so-called left pseudo-
inverse A+

l as
A+

l := (AT A)−1AT , (1)

which yields A+
l A = In×n. If instead it is m < n and rank(A) = m, then it is

possible to define the right pseudo-inverse A+
r as

A+
r := AT (AAT )−1, (2)

which yields AA+
r = Im×m. If one wants to handle singularities, then it is possible

to define a damped pseudo-inverse as

A+
l := (AT A + λ2In×n)−1AT , (3)

2

https://bitbucket.org/ethz-asl-lr/robotdynamics_exercise_1c
https://bitbucket.org/ethz-asl-lr/robotdynamics_exercise_1c


and
A+

r := AT (AAT + λ2Im×m)−1, (4)

In this first exercise, you are required to provide an implementation of (3) and (4)
as a MATLAB function. The function place-holder to be completed is:

1 function pinvA = pseudoInverseMat(A, lambda)
2 % Input: Any m−by−n matrix.
3 % Output: An n−by−m pseudo−inverse of the input according to the ...

Moore−Penrose formula
4

5 % Get the number of rows (m) and columns (n) of A
6 [m,n] = size(A);
7

8 ...
9

10 end

Solution 2.1

We can implement the two pseudo-inversions in one single script by checking the di-
mensions of matrix A and choosing the appropriate pseudo-inversion scheme. Note
that we could use Matlab’s inv() function to compute the inverse of AAT or AT A.
However, a more accurate method is to use the ”\” and ”/” operators, which produce
more accurate results. For more information, please check the Matlab documenta-
tion.

1 function pinvA = pseudoInverseMat(A, lambda)
2 % Input: Any m−by−n matrix.
3 % Output: An n−by−m pseudo−inverse of the input according to the ...

Moore−Penrose formula
4

5 % Get the number of rows (m) and columns (n) of A
6 [m,n] = size(A);
7

8 if (m>n)
9 % Compute the left pseudoinverse.

10 pinvA = (A'*A + lambda*lambda*eye(n,n))\A';
11 elseif (m≤n)
12 % Compute the right pseudoinverse.
13 pinvA = A'/(A*A' + lambda*lambda*eye(m,m));
14 end
15

16 end

3 Iterative Inverse Kinematics

Exercise 3.1

Consider a desired position Ir
∗
IE =

[
0.5649 0 0.5509

]T
and orientation C∗IE =

I3×3. We wish to find the joint space configuration q which corresponds to the
desired pose. This exercise focuses on the implementation of an iterative inverse
kinematics algorithm, which can be summarized as follows:

1. q← q0 . start configuration

2. while ‖χ∗e − χe (q)‖ > tol . while the solution is not reached

3. Je0 ← Je0 (q) = ∂χe

∂q̇ (q) . evaluate Jacobian for q

3



4. J+
e0 ← (Je0)

+
. update the pseudoinverse

5. ∆χe ← χ∗e − χe (q) . find the end-effector configuration error vector

6. q← q + J+
e0∆χe . update the generalized coordinates

Note the use of the geometric Jacobian Je0, which was derived in the last exer-
cise. You should implement the algorithm by defining the orientation error as the
rotational vector extracted from the relative rotation between the desired orienta-
tion C∗IE and the one based on the solution of the current iteration CIE(q). The
rotational vector is hence going to defined as

∆ϕ = IϕEE∗ = rotMatToPhi(C∗IEC
T
IE(q)) (5)

To do this, you should implement a function which extracts a rotational vector from
a rotation matrix.

1 function phi = rotMatToRotVec(C)
2 % Input: a rotation matrix C
3 % Output: the rotational vector which describes the rotation C
4 end
5

6 function q = inverseKinematics(I r IE des, C IE des, q 0, tol)
7 % Input: desired end−effector position, desired end−effector ...

orientation (rotation matrix),
8 % initial guess for joint angles, threshold for the ...

stopping−criterion
9 % Output: joint angles which match desired end−effector position ...

and orientation
10 end

Solution 3.1

1 function phi = rotMatToRotVec(C)
2 % Input: a rotation matrix C
3 % Output: the rotational vector which describes the rotation C
4 th = acos(0.5*(C(1,1)+C(2,2)+C(3,3)−1));
5

6 if (abs(th)<eps)
7 n = zeros(3,1);
8 else
9 n = 1/(2*sin(th))*[C(3,2) − C(2,3);

10 C(1,3) − C(3,1);
11 C(2,1) − C(1,2)];
12 end
13

14 phi = th*n;
15

16 end
17

18

19

20 function q = inverseKinematics(I r IE des, C IE des, q 0, tol)
21 % Input: desired end−effector position, desired end−effector ...

orientation (rotation matrix),
22 % initial guess for joint angles, threshold for the ...

stopping−criterion
23 % Output: joint angles which match desired end−effector position ...

and orientation
24

25 %% Setup
26 it = 0;

4



27 I r IE des = I r IE des(:);
28 q 0 = q 0(:);
29

30 % Set the maximum number of iterations.
31 max it = 1000;
32

33 % Initialize the solution with the initial guess.
34 q = q 0;
35

36 % Damping factor.
37 lambda = 0.001;
38

39 % Initialize error.
40 C IE = jointToRotMat(q);
41 I r IE = jointToPosition(q);
42 C err = C IE des*C IE';
43 dph = rotMatToRotVec(C err);
44 dr = I r IE des − I r IE;
45 dxe = [dr; dph];
46

47

48 %% Iterative inverse kinematics
49

50 % Iterate until terminating condition.
51 while (norm(dxe)>tol && it < max it)
52

53 J = [jointToPosJac(q);
54 jointToRotJac(q)];
55

56 dq = pseudoInverseMat(J, lambda)*[dr;
57 dph];
58

59 % Update law.
60 q = q + 0.5*dq;
61

62 % Update error
63 C IE = jointToRotMat(q);
64 C err = C IE des*C IE';
65 dph = rotMatToRotVec(C err);
66

67 dr = I r IE des − jointToPosition(q);
68 dxe = [dr; dph];
69

70 it = it+1;
71 end
72

73 fprintf('Inverse kinematics terminated after %d iterations.\n',it);
74 fprintf('Position error: %e.\n',norm(dr));
75 fprintf('Attitude error: %e.\n',norm(dph));
76

77 end

4 Kinematic Motion Control

The final section in this series will demonstrate the use of the iterative inverse
kinematics method to implement a basic end-effector pose controller for the ABB
manipulator. The controller will act only on a kinematic level, i.e. it will produce
end-effector velocities as a function of the current and desired end-effector pose.
This will result in a motion control scheme which should track a series of points
defining a trajectory in the task-space of the robot. For all of this to work we will
additionally need the following functional modules:

1. A trajectory generator, which will produce an 3-by-N array, containing N
points in Cartesian space defining a discretized path that the end-effector
should track.

5



2. A kinematics-level simulator, which will integrate over each time-step, the
resulting velocities generated by the kinematic motion controller of the previ-
ous exercise. This integration, at each iteration, should generate an updated
configuration of the robot which is then provided to the visualization for ren-
dering.

To save time during the exercise session, we have provided functions to implement
most of the grunt work regarding the aforementioned points. The first function
provided generates a line trajectory defined between two points for a given path
duration and time step-size. The function provided is:

1 function r traj = generateLineTrajectory(r start, r end, t total, ∆ t)
2 % Inputs:
3 % r start : start position
4 % r end : end position
5 % t total : total time duration (in sec)
6 % ∆ t : time discretization step−size (in ms)
7 % Output: 3xN matrix mapping local rotational velocities to ...

quaternion derivatives
8

9 N = floor(tf / ts);
10 x traj = linspace(r start(1),r end(1),N);
11 y traj = linspace(r start(2),r end(2),N);
12 z traj = linspace(r start(3),r end(3),N);
13 r traj = [x traj; y traj; z traj].';
14

15 end

The second script we provide, is that of the motion control visualization.m,
which is essentially a modified version of the test visualization.m script. Simply
running new script will begin the motion control simulation, and if unmodified, one
can observe a motion almost identical to that of the test visualization. Although
you are not required to modify the motion control visualization.m script: we
recommend to briefly read through it and understand what it does:

1 % Motor control visualization script
2

3 % Close all figures
4 close all; clear;
5

6 % Load the visualization
7 loadVisualization;
8

9 % Set the sampling time (in seconds)
10 ts = 0.05;
11

12 % Configure a new trajectory − use defaults if undefined
13 if ¬exist('r start','var')
14 r start = [1 1 1].';
15 end
16 if ¬exist('r end','var')
17 r end = [0.5 0.5 0.5].';
18 end
19 if ¬exist('tf','var')
20 tf = 15.0;
21 end
22 if ¬exist('q 0','var')
23 q 0 = zeros(6,1);
24 end
25

26 % Generate a new desired trajectory
27 r traj = generateLineTrajectory(r start, r end, tf, ts);

6



28

29 % Initialize the vector of generalized coordinates
30 q = q 0;
31

32 % Set the number of time steps
33 kf = tf/ts; % Number of iterations as a function of the duration ...

and the sampling time
34

35 % Notify that the visualization loop is starting
36 disp('Starting visualization loop.');
37

38 % Run a visualization loop
39 for k=1:kf
40 try
41 % Start a timer
42 startLoop = tic;
43 % Set the updated vector of generalized coordinates.
44 q = kinematicMotionControl(tf,ts,k,q,r traj);
45 % Set the generalized coordinates to the robot visualizer class
46 abbRobot.setJointPositions(q);
47 % Update the visualization figure
48 drawnow;
49 % If enough time is left, wait to try to keep the update ...

frequency
50 % stable
51 residualWaitTime = ts − toc(startLoop);
52 if (residualWaitTime > 0)
53 pause(residualWaitTime);
54 end
55 catch
56 disp('Exiting the visualization loop.');
57 break;
58 end
59 end
60

61 % Notify the user that the script has ended.
62 disp('Visualization loop has ended.');

Exercise 4.1

The final exercise to combine the tools in the previous exercise, to implement a
kinematic controller to track a single 3D line trajectory. The function to generate
the line has been provided, however, you are required to specify the following four
parameters prior to executing the motion control visualization.m script:

1. r start: The start point of the trajectory.

2. r end: The end point of the trajectory.

3. tf: The total duration of the trajectory.

4. q 0: The initial configuration of the robot.

Note however that the r start and r end are not specified in any particular frame
and thus it is up to you to experiment with either defining them in the end-effector
or inertial reference frames. In this exercise, you are required to place your entire
sequence of computations in the kinematicMotionControl.m file:

1 function q new = kinematicMotionControl(tf,ts,k,q current,r traj)
2 % Inputs:
3 % tf : total simulation time.
4 % ts : simulation time−step.

7



5 % k : current iteration.
6 % q current : current configuration of the robot
7 % r traj : desired Cartesian trajectory
8 % Output: joint−space state of the robot to send to the ...

visualization.
9

10 % Total number of iterations
11 Nf = tf/ts;
12

13 % Step 1. − Sample trajectory configuration
14 omega = 0.25;
15 time = k*ts;
16 Dq max = 0.5;
17

18 % Step 2. − Compute the updated joint velocities − this would be ...
used for

19 % a velocity controllable robot
20 Dq = 2*pi*omega*Dq max*cos(2*pi*omega*time) * ones(6,1);
21

22 % Step 3. − Time integration step − this is would be used for a ...
position

23 % controllable robot
24 q new = q current + Dq*ts;
25

26 end

Solution 4.1

The final implementation can be solved as follows:

1 function pinvA = pseudoInverseMat(A, lambda)
2 % Inputs:
3 % tf : total simulation time.
4 % ts : simulation time−step.
5 % k : current iteration.
6 % q current : current configuration of the robot
7 % Output: joint−space state of the robot to send to the ...

visualization.
8

9 % Total number of iterations
10 Nf = tf/ts;
11 K p = 1.0;
12

13 % Step 1. − Compute the next point in the Cartesian trajectory ...
of the

14 % end−effector
15 r new = r traj(k,:).';
16

17 % Step 2. − Update step
18 r current = jointToPosition(q current);
19 J current = jointToPosJac(q current);
20 w new = K p*(r new − r current);
21 Dq = J current\w new;
22

23 % Step 3. − Time integration step − this is would be used for a ...
position

24 % controllable robot
25 q new = q current + Dq*ts;
26

27 end

8


	Introduction
	Matrix Pseudo-Inversion
	Iterative Inverse Kinematics
	Kinematic Motion Control

