2-3 Trees | (Search, Insert and Deletion)
Last Updated :
05 Sep, 2022
In binary search trees we have seen the average-case time for operations like search/insert/delete is O(log N) and the worst-case time is O(N) where N is the number of nodes in the tree.
Like other Trees include AVL trees, Red Black Tree, B tree, 2-3 Tree is also a height balanced tree.
The time complexity of search/insert/delete is O(log N) .
A 2-3 tree is a B-tree of order 3.
Properties of 2-3 tree:
- Nodes with two children are called 2-nodes. The 2-nodes have one data value and two children
- Nodes with three children are called 3-nodes. The 3-nodes have two data values and three children.
- Data is stored in sorted order.
- It is a balanced tree.
- All the leaf nodes are at same level.
- Each node can either be leaf, 2 node, or 3 node.
- Always insertion is done at leaf.
Search: To search a key K in given 2-3 tree T, we follow the following procedure:
Base cases:
- If T is empty, return False (key cannot be found in the tree).
- If current node contains data value which is equal to K, return True.
- If we reach the leaf-node and it doesn't contain the required key value K, return False.
Recursive Calls:
- If K < currentNode.leftVal, we explore the left subtree of the current node.
- Else if currentNode.leftVal < K < currentNode.rightVal, we explore the middle subtree of the current node.
- Else if K > currentNode.rightVal, we explore the right subtree of the current node.
Consider the following example:




Insertion: There are 3 possible cases in insertion which have been discussed below:
- Case 1: Insert in a node with only one data element

- Case 2: Insert in a node with two data elements whose parent contains only one data element.



- Case 3: Insert in a node with two data elements whose parent also contains two data elements.




In Deletion Process for a specific value:
- To delete a value, it is replaced by its in-order successor and then removed.
- If a node is left with less than one data value then two nodes must be merged together.
- If a node becomes empty after deleting a value, it is then merged with another node.
To Understand the deletion process-
Consider the 2-3 tree given below
Given 2-3 Tree
delete the following values from it: 69,72, 99, 81.
To delete 69, swap it with its in-order successor, that is, 72. 69 now comes in the leaf node. Remove the value 69 from the leaf node.
After deletion 69
To delete 72, 72 is an internal node. To delete this value swap 72 with its in-order successor 81 so that 72 now becomes a leaf node. Remove the value 72 from the leaf node.
After deletion 72
Now there is a leaf node that has less than 1 data value thereby violating the property of a 2-3 tree. So the node must be merged.
To merge the node, pull down the lowest data value in the parent’s node and merge it with its left sibling.
Rebalancing to Satisfy 23 Tree property
To delete 99, 99 is present in a leaf node, so the data value can be easily removed.
After deletion 99
Now there is a leaf node that has less than 1 data value, thereby violating the property of a 2-3 tree.
So the node must be merged. To merge the node, pull down the lowest data value in the parent’s node and merge it with its left sibling.
Rebalancing to Satisfy 2-3 Tree Property
To delete 81, 81 is an internal node. To delete this value swap 81 with its in-order successor 90 so that 81 now becomes a leaf node. Remove the value 81 from the leaf node.
After deletion 81
Now there is a leaf node that has less than 1 data value, thereby violating the property of a 2-3 tree. So the node must be merged. To merge the node, pull down the lowest data value in the parent’s node and merge it with its left sibling.
Rebalancing to Satisfy 2-3 Tree property
As internal node cannot be empty. So now pull down the lowest data value from the parent’s node and merge the empty node with its left sibling
Rebalancing to Satisfy 2-3 Tree Property
NOTE: In a 2-3 tree, each interior node has either two or three children. This means that a 2-3 tree is not a binary tree.
Similar Reads
Introduction to Tree Data Structure Tree data structure is a hierarchical structure that is used to represent and organize data in the form of parent child relationship. The following are some real world situations which are naturally a tree.Folder structure in an operating system.Tag structure in an HTML (root tag the as html tag) or
15+ min read
Tree Traversal Techniques Tree Traversal techniques include various ways to visit all the nodes of the tree. Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way to traverse them, trees can be traversed in different ways. In this article, we will discuss all the tree travers
7 min read
Applications of tree data structure A tree is a type of data structure that represents a hierarchical relationship between data elements, called nodes. The top node in the tree is called the root, and the elements below the root are called child nodes. Each child node may have one or more child nodes of its own, forming a branching st
4 min read
Advantages and Disadvantages of Tree Tree is a non-linear data structure. It consists of nodes and edges. A tree represents data in a hierarchical organization. It is a special type of connected graph without any cycle or circuit.Advantages of Tree:Efficient searching: Trees are particularly efficient for searching and retrieving data.
2 min read
Difference between an array and a tree Array:An array is a collection of homogeneous(same type) data items stored in contiguous memory locations. For example, if an array is of type âintâ, it can only store integer elements and cannot allow the elements of other types such as double, float, char, etc. The array is a linear data structure
3 min read
Inorder Tree Traversal without Recursion Given a binary tree, the task is to perform in-order traversal of the tree without using recursion.Example:Input:Output: 4 2 5 1 3Explanation: Inorder traversal (Left->Root->Right) of the tree is 4 2 5 1 3Input:Output: 1 7 10 8 6 10 5 6Explanation: Inorder traversal (Left->Root->Right) o
8 min read
Types of Trees in Data Structures A tree in data structures is a hierarchical data structure that consists of nodes connected by edges. It is used to represent relationships between elements, where each node holds data and is connected to other nodes in a parent-child relationship.Types of Trees TreeThe main types of trees in data s
4 min read
Generic Trees (N-ary Tree)
Introduction to Generic Trees (N-ary Trees)Generic trees are a collection of nodes where each node is a data structure that consists of records and a list of references to its children(duplicate references are not allowed). Unlike the linked list, each node stores the address of multiple nodes. Every node stores address of its children and t
5 min read
Inorder traversal of an N-ary TreeGiven an N-ary tree containing, the task is to print the inorder traversal of the tree. Examples:Â Input: N = 3Â Â Output: 5 6 2 7 3 1 4Input: N = 3Â Â Output: 2 3 5 1 4 6Â Approach: The inorder traversal of an N-ary tree is defined as visiting all the children except the last then the root and finall
6 min read
Preorder Traversal of an N-ary TreeGiven an N-ary Tree. The task is to write a program to perform the preorder traversal of the given n-ary tree. Examples: Input: 3-Array Tree 1 / | \ / | \ 2 3 4 / \ / | \ 5 6 7 8 9 / / | \ 10 11 12 13 Output: 1 2 5 10 6 11 12 13 3 4 7 8 9 Input: 3-Array Tree 1 / | \ / | \ 2 3 4 / \ / | \ 5 6 7 8 9 O
14 min read
Iterative Postorder Traversal of N-ary TreeGiven an N-ary tree, the task is to find the post-order traversal of the given tree iteratively.Examples: Input: 1 / | \ 3 2 4 / \ 5 6 Output: [5, 6, 3, 2, 4, 1] Input: 1 / \ 2 3 Output: [2, 3, 1] Approach:We have already discussed iterative post-order traversal of binary tree using one stack. We wi
10 min read
Level Order Traversal of N-ary TreeGiven an N-ary Tree. The task is to print the level order traversal of the tree where each level will be in a new line. Examples: Input: Image Output: 13 2 45 6Explanation: At level 1: only 1 is present.At level 2: 3, 2, 4 is presentAt level 3: 5, 6 is present Input: Image Output: 12 3 4 56 7 8 9 10
11 min read
ZigZag Level Order Traversal of an N-ary TreeGiven a Generic Tree consisting of n nodes, the task is to find the ZigZag Level Order Traversal of the given tree.Note: A generic tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at most two children per node (left and right), a generic tree allow
8 min read
Binary Tree
Introduction to Binary TreeBinary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina
15+ min read
Properties of Binary TreeThis post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina
4 min read
Applications, Advantages and Disadvantages of Binary TreeA binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
2 min read
Binary Tree (Array implementation)Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
6 min read
Complete Binary TreeWe know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
7 min read
Perfect Binary TreeWhat is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
4 min read
Ternary Tree