Binary Indexed Tree or Fenwick Tree
Last Updated :
23 Jul, 2025
Binary Indexed Trees are used for problems where we have following types of multiple operations on a fixed sized.
- Prefix Operation (Sum, Product, XOR, OR, etc). Note that range operations can also be solved using prefix. For example, range sum from index L to R is prefix sum till R (included minus prefix sum til L-1.
- Update an array item
Time Complexities of both the operations is O(Log n). Note that we need O(n Log n) preprocessing time and O(n) auxiliary space.
Example Problem to Understand Binary Index Tree
Let us consider the following problem to understand Binary Indexed Tree.
We have an array arr[0 . . . n-1]. We would like to
- Compute the sum of the first i elements.
- Modify the value of a specified element of the array arr[i] = x where 0 <= i <= n-1.
A simple solution is to run a loop from 0 to i-1 and calculate the sum of the elements. To update a value, simply do arr[i] = x. The first operation takes O(n) time and the second operation takes O(1) time. Another simple solution is to create an extra array and store the sum of the first i-th elements at the i-th index in this new array. The sum of a given range can now be calculated in O(1) time, but the update operation takes O(n) time now. This works well if there are a large number of query operations but a very few number of update operations.
Could we perform both the query and update operations in O(log n) time?
One efficient solution is to use Segment Tree that performs both operations in O(Logn) time.
An alternative solution is Binary Indexed Tree, which also achieves O(Logn) time complexity for both operations. Compared with Segment Tree, Binary Indexed Tree requires less space and is easier to implement..
Representation
Binary Indexed Tree is represented as an array. Let the array be BITree[]. Each node of the Binary Indexed Tree stores the sum of some elements of the input array. The size of the Binary Indexed Tree is equal to the size of the input array, denoted as n. In the code below, we use a size of n+1 for ease of implementation.
Construction
We initialize all the values in BITree[] as 0. Then we call update() for all the indexes, the update() operation is discussed below.
Operations
getSum(x): Returns the sum of the sub-array arr[0,...,x]
// Returns the sum of the sub-array arr[0,...,x] using BITree[0..n], which is constructed from arr[0..n-1]
1) Initialize the output sum as 0, the current index as x+1.
2) Do following while the current index is greater than 0.
...a) Add BITree[index] to sum
...b) Go to the parent of BITree[index]. The parent can be obtained by removing
the last set bit from the current index, i.e., index = index - (index & (-index))
3) Return sum.

The diagram above provides an example of how getSum() is working. Here are some important observations.
BITree[0] is a dummy node.
BITree[y] is the parent of BITree[x], if and only if y can be obtained by removing the last set bit from the binary representation of x, that is y = x - (x & (-x)).
The child node BITree[x] of the node BITree[y] stores the sum of the elements between y(inclusive) and x(exclusive): arr[y,...,x).
update(x, val): Updates the Binary Indexed Tree (BIT) by performing arr[index] += val
// Note that the update(x, val) operation will not change arr[]. It only makes changes to BITree[]
1) Initialize the current index as x+1.
2) Do the following while the current index is smaller than or equal to n.
...a) Add the val to BITree[index]
...b) Go to next element of BITree[index]. The next element can be obtained by incrementing the last set bit of the current index, i.e., index = index + (index & (-index))

The update function needs to make sure that all the BITree nodes which contain arr[i] within their ranges being updated. We loop over such nodes in the BITree by repeatedly adding the decimal number corresponding to the last set bit of the current index.
How does Binary Indexed Tree work?
The idea is based on the fact that all positive integers can be represented as the sum of powers of 2. For example 19 can be represented as 16 + 2 + 1. Every node of the BITree stores the sum of n elements where n is a power of 2. For example, in the first diagram above (the diagram for getSum()), the sum of the first 12 elements can be obtained by the sum of the last 4 elements (from 9 to 12) plus the sum of 8 elements (from 1 to 8). The number of set bits in the binary representation of a number n is O(Logn). Therefore, we traverse at-most O(Logn) nodes in both getSum() and update() operations. The time complexity of the construction is O(nLogn) as it calls update() for all n elements.
Implementation:
Following are the implementations of Binary Indexed Tree.
C++
// C++ code to demonstrate operations of Binary Index Tree
#include <iostream>
using namespace std;
/* n --> No. of elements present in input array.
BITree[0..n] --> Array that represents Binary Indexed Tree.
arr[0..n-1] --> Input array for which prefix sum is evaluated. */
// Returns sum of arr[0..index]. This function assumes
// that the array is preprocessed and partial sums of
// array elements are stored in BITree[].
int getSum(int BITree[], int index)
{
int sum = 0; // Initialize result
// index in BITree[] is 1 more than the index in arr[]
index = index + 1;
// Traverse ancestors of BITree[index]
while (index>0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree) at given index
// in BITree. The given value 'val' is added to BITree[i] and
// all of its ancestors in tree.
void updateBIT(int BITree[], int n, int index, int val)
{
// index in BITree[] is 1 more than the index in arr[]
index = index + 1;
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Constructs and returns a Binary Indexed Tree for given
// array of size n.
int *constructBITree(int arr[], int n)
{
// Create and initialize BITree[] as 0
int *BITree = new int[n+1];
for (int i=1; i<=n; i++)
BITree[i] = 0;
// Store the actual values in BITree[] using update()
for (int i=0; i<n; i++)
updateBIT(BITree, n, i, arr[i]);
// Uncomment below lines to see contents of BITree[]
//for (int i=1; i<=n; i++)
// cout << BITree[i] << " ";
return BITree;
}
// Driver program to test above functions
int main()
{
int freq[] = {2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9};
int n = sizeof(freq)/sizeof(freq[0]);
int *BITree = constructBITree(freq, n);
cout << "Sum of elements in arr[0..5] is "
<< getSum(BITree, 5);
// Let use test the update operation
freq[3] += 6;
updateBIT(BITree, n, 3, 6); //Update BIT for above change in arr[]
cout << "\nSum of elements in arr[0..5] after update is "
<< getSum(BITree, 5);
return 0;
}
Java
// Java program to demonstrate lazy
// propagation in segment tree
import java.util.*;
import java.lang.*;
import java.io.*;
class BinaryIndexedTree
{
// Max tree size
final static int MAX = 1000;
static int BITree[] = new int[MAX];
/* n --> No. of elements present in input array.
BITree[0..n] --> Array that represents Binary
Indexed Tree.
arr[0..n-1] --> Input array for which prefix sum
is evaluated. */
// Returns sum of arr[0..index]. This function
// assumes that the array is preprocessed and
// partial sums of array elements are stored
// in BITree[].
int getSum(int index)
{
int sum = 0; // Initialize result
// index in BITree[] is 1 more than
// the index in arr[]
index = index + 1;
// Traverse ancestors of BITree[index]
while(index>0)
{
// Add current element of BITree
// to sum
sum += BITree[index];
// Move index to parent node in
// getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree)
// at given index in BITree. The given value
// 'val' is added to BITree[i] and all of
// its ancestors in tree.
public static void updateBIT(int n, int index,
int val)
{
// index in BITree[] is 1 more than
// the index in arr[]
index = index + 1;
// Traverse all ancestors and add 'val'
while(index <= n)
{
// Add 'val' to current node of BIT Tree
BITree[index] += val;
// Update index to that of parent
// in update View
index += index & (-index);
}
}
/* Function to construct fenwick tree
from given array.*/
void constructBITree(int arr[], int n)
{
// Initialize BITree[] as 0
for(int i=1; i<=n; i++)
BITree[i] = 0;
// Store the actual values in BITree[]
// using update()
for(int i = 0; i < n; i++)
updateBIT(n, i, arr[i]);
}
// Main function
public static void main(String args[])
{
int freq[] = {2, 1, 1, 3, 2, 3,
4, 5, 6, 7, 8, 9};
int n = freq.length;
BinaryIndexedTree tree = new BinaryIndexedTree();
// Build fenwick tree from given array
tree.constructBITree(freq, n);
System.out.println("Sum of elements in arr[0..5]"+
" is "+ tree.getSum(5));
// Let use test the update operation
freq[3] += 6;
// Update BIT for above change in arr[]
updateBIT(n, 3, 6);
// Find sum after the value is updated
System.out.println("Sum of elements in arr[0..5]"+
" after update is " + tree.getSum(5));
}
}
// This code is contributed by Ranjan Binwani
Python
# Python implementation of Binary Indexed Tree
# Returns sum of arr[0..index]. This function assumes
# that the array is preprocessed and partial sums of
# array elements are stored in BITree[].
def getsum(BITTree,i):
s = 0 #initialize result
# index in BITree[] is 1 more than the index in arr[]
i = i+1
# Traverse ancestors of BITree[index]
while i > 0:
# Add current element of BITree to sum
s += BITTree[i]
# Move index to parent node in getSum View
i -= i & (-i)
return s
# Updates a node in Binary Index Tree (BITree) at given index
# in BITree. The given value 'val' is added to BITree[i] and
# all of its ancestors in tree.
def updatebit(BITTree , n , i ,v):
# index in BITree[] is 1 more than the index in arr[]
i += 1
# Traverse all ancestors and add 'val'
while i <= n:
# Add 'val' to current node of BI Tree
BITTree[i] += v
# Update index to that of parent in update View
i += i & (-i)
# Constructs and returns a Binary Indexed Tree for given
# array of size n.
def construct(arr, n):
# Create and initialize BITree[] as 0
BITTree = [0]*(n+1)
# Store the actual values in BITree[] using update()
for i in range(n):
updatebit(BITTree, n, i, arr[i])
# Uncomment below lines to see contents of BITree[]
#for i in range(1,n+1):
# print BITTree[i],
return BITTree
# Driver code to test above methods
freq = [2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9]
BITTree = construct(freq,len(freq))
print("Sum of elements in arr[0..5] is " + str(getsum(BITTree,5)))
freq[3] += 6
updatebit(BITTree, len(freq), 3, 6)
print("Sum of elements in arr[0..5]"+
" after update is " + str(getsum(BITTree,5)))
# This code is contributed by Raju Varshney
C#
// C# program to demonstrate lazy
// propagation in segment tree
using System;
public class BinaryIndexedTree
{
// Max tree size
readonly static int MAX = 1000;
static int []BITree = new int[MAX];
/* n --> No. of elements present in input array.
BITree[0..n] --> Array that represents Binary
Indexed Tree.
arr[0..n-1] --> Input array for which prefix sum
is evaluated. */
// Returns sum of arr[0..index]. This function
// assumes that the array is preprocessed and
// partial sums of array elements are stored
// in BITree[].
int getSum(int index)
{
int sum = 0; // Initialize result
// index in BITree[] is 1 more than
// the index in arr[]
index = index + 1;
// Traverse ancestors of BITree[index]
while(index>0)
{
// Add current element of BITree
// to sum
sum += BITree[index];
// Move index to parent node in
// getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree)
// at given index in BITree. The given value
// 'val' is added to BITree[i] and all of
// its ancestors in tree.
public static void updateBIT(int n, int index,
int val)
{
// index in BITree[] is 1 more than
// the index in arr[]
index = index + 1;
// Traverse all ancestors and add 'val'
while(index <= n)
{
// Add 'val' to current node of BIT Tree
BITree[index] += val;
// Update index to that of parent
// in update View
index += index & (-index);
}
}
/* Function to construct fenwick tree
from given array.*/
void constructBITree(int []arr, int n)
{
// Initialize BITree[] as 0
for(int i = 1; i <= n; i++)
BITree[i] = 0;
// Store the actual values in BITree[]
// using update()
for(int i = 0; i < n; i++)
updateBIT(n, i, arr[i]);
}
// Driver code
public static void Main(String []args)
{
int []freq = {2, 1, 1, 3, 2, 3,
4, 5, 6, 7, 8, 9};
int n = freq.Length;
BinaryIndexedTree tree = new BinaryIndexedTree();
// Build fenwick tree from given array
tree.constructBITree(freq, n);
Console.WriteLine("Sum of elements in arr[0..5]"+
" is "+ tree.getSum(5));
// Let use test the update operation
freq[3] += 6;
// Update BIT for above change in arr[]
updateBIT(n, 3, 6);
// Find sum after the value is updated
Console.WriteLine("Sum of elements in arr[0..5]"+
" after update is " + tree.getSum(5));
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// Javascript program to demonstrate lazy
// propagation in segment tree
// Max tree size
let MAX = 1000;
let BITree=new Array(MAX);
/* n --> No. of elements present in input array.
BITree[0..n] --> Array that represents Binary
Indexed Tree.
arr[0..n-1] --> Input array for which prefix sum
is evaluated. */
// Returns sum of arr[0..index]. This function
// assumes that the array is preprocessed and
// partial sums of array elements are stored
// in BITree[].
function getSum( index)
{
let sum = 0; // Initialize result
// index in BITree[] is 1 more than
// the index in arr[]
index = index + 1;
// Traverse ancestors of BITree[index]
while(index>0)
{
// Add current element of BITree
// to sum
sum += BITree[index];
// Move index to parent node in
// getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree)
// at given index in BITree. The given value
// 'val' is added to BITree[i] and all of
// its ancestors in tree.
function updateBIT(n,index,val)
{
// index in BITree[] is 1 more than
// the index in arr[]
index = index + 1;
// Traverse all ancestors and add 'val'
while(index <= n)
{
// Add 'val' to current node of BIT Tree
BITree[index] += val;
// Update index to that of parent
// in update View
index += index & (-index);
}
}
/* Function to construct fenwick tree
from given array.*/
function constructBITree(arr,n)
{
// Initialize BITree[] as 0
for(let i=1; i<=n; i++)
BITree[i] = 0;
// Store the actual values in BITree[]
// using update()
for(let i = 0; i < n; i++)
updateBIT(n, i, arr[i]);
}
// Main function
let freq=[2, 1, 1, 3, 2, 3,
4, 5, 6, 7, 8, 9];
let n = freq.length;
// Build fenwick tree from given array
constructBITree(freq, n);
document.write("Sum of elements in arr[0..5]"+
" is "+ getSum(5)+"<br>");
// Let use test the update operation
freq[3] += 6;
// Update BIT for above change in arr[]
updateBIT(n, 3, 6);
// Find sum after the value is updated
document.write("Sum of elements in arr[0..5]"+
" after update is " + getSum(5));
// This code is contributed by patel2127
</script>
OutputSum of elements in arr[0..5] is 12
Sum of elements in arr[0..5] after update is 18
Time Complexity: O(NLogN)
Auxiliary Space: O(N)
Can we extend the Binary Indexed Tree to computing the sum of a range in O(Logn) time?
Yes. rangeSum(l, r) = getSum(r) - getSum(l-1).
Applications:
The implementation of the arithmetic coding algorithm. The development of the Binary Indexed Tree was primarily motivated by its application in this case. See this for more details.
Example Problems:
Count inversions in an array | Set 3 (Using BIT)
Two Dimensional Binary Indexed Tree or Fenwick Tree
Counting Triangles in a Rectangular space using BIT
References:
https://en.wikipedia.org/wiki/Fenwick_tree
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binaryIndexedTrees
Introduction to Binary Indexed Tree
Binary Indexed Tree (An Example Problem)
Similar Reads
Basics & Prerequisites
Data Structures
Getting Started with Array Data StructureArray is a collection of items of the same variable type that are stored at contiguous memory locations. It is one of the most popular and simple data structures used in programming. Basic terminologies of ArrayArray Index: In an array, elements are identified by their indexes. Array index starts fr
14 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem